Development of inhibitors and vaccines that mitigate rumen-derived methane by targeting methanogens relies on knowledge of the methanogens present. We investigated the composition of archaeal communities in the rumens of farmed sheep (Ovis aries), cattle (Bos taurus) and red deer (Cervus elaphus) using denaturing gradient gel electrophoresis (DGGE) to generate fingerprints of archaeal 16S rRNA genes. The total archaeal communities were relatively constant across species and diets, and were less variable and less diverse than bacterial communities. There were diet- and ruminant-species-based differences in archaeal community structure, but the same dominant archaea were present in all rumens. These were members of three coherent clades: species related to Methanobrevibacter ruminantium and Methanobrevibacter olleyae; species related to Methanobrevibacter gottschalkii, Methanobrevibacter thaueri and Methanobrevibacter millerae; and species of the genus Methanosphaera. Members of an archaeal group of unknown physiology, designated rumen cluster C (RCC), were also present. RCC-specific DGGE, clone library analysis and quantitative real-time PCR showed that their 16S rRNA gene sequences were very diverse and made up an average of 26.5% of the total archaea. RCC sequences were not readily detected in the DGGE patterns of total archaeal 16S rRNA genes because no single sequence type was abundant enough to form dominant bands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1574-6941.2011.01056.x | DOI Listing |
PLoS One
January 2025
Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL, United States of America.
Municipal solid waste (MSW) landfills represent underexplored microbial ecosystems. Landfills contain variable amounts of antibiotic and construction and demolition (C&D) wastes, which have the potential to alter microbial metabolism due to biocidal or redox active components, and these effects are largely underexplored. To circumvent the challenge of MSW heterogeneity, we conducted a 65-day time series study on simulated MSW microcosms to assess microbiome changes using 16S rRNA sequencing in response to 1) Fe(OH)3 and 2) Na2SO4 to represent redox active components of C&D waste as well as 3) antibiotics.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Department of Life Sciences, University of Coimbra, CEMMPRE, ARISE, Coimbra, Portugal.
Three bacterial strains, designated FZUC8N2.13, FBOR7N2.3 and FZUR7N2.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
Six Gram-stain-positive and rod-shaped strains, designated FJAT-51614, FJAT-51639, FJAT-52054, FJAT-52991, FJAT-53654 and FJAT-53711, were isolated from a mangrove ecosystem. The condition for growth among the strains varied (pH ranging 5.0-11.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315800, PR China.
Two Gram-stain-negative, curved-rod-shaped, non-motile and aerobic bacteria W6 and I13 were isolated from marine sediment samples collected from Meishan Island located in the East China Sea. Catalase and oxidase activities and hydrolysis of Tween 40, 60 and 80 were positive for both strains, while nitrate reduction, indole production, methyl red reaction and HS production were negative. Phylogenetic analyses based on 16S rRNA and genome sequences revealed that strains W6 and I13 formed distinct phylogenetic lineages within the genera and , respectively.
View Article and Find Full Text PDFAntonie Van Leeuwenhoek
January 2025
Institute of Plant Science and Resources, Okayama University, Okayama, Japan.
A Gram-stain-negative, rod-shaped, non-motile, aerobic, light-yellow-pigmented bacterium, designated as strain Y10, was isolated from Lumnitzera racemosa leaf in Iriomote island mangrove forests in Japan. The 16S rRNA gene sequence analysis revealed that the isolate Y10 was affiliated with the family Flavobacteriaceae, and the sequence showed the highest sequence identity to that of Neptunitalea chrysea NBRC 110019 (97.2%) and others with below 96% sequence identity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!