At the start of the 21st century, the human genome project provided the scientific community with an enormous array of information as genetic blueprints. A landmark period, yet its potential contribution to medicine at the time was limited and unknown. However, with new technological advances, the benefits of identifying genomic profiles became apparent. This article reviews the historical accomplishments made by the human genome project, future applications of genomic expression profiles with the use of microarray gene chip technology, and the pharmacogenomic translational application of these models to dermatology. A new scientific movement in dermatology has begun with intentions of discovering individual genomic profiles responsible for dermatologic disease and drug metabolism, so that medical management can be personalized towards the genome rather than the disease. This review shows how pharmacogenomics has taken the lead in forming a basic framework of revealing specific drug metabolic pathways in the skin that can consequently be altered to maximize and minimize therapeutic efficacy and side effects, respectively. Dermatology as a model field in medicine has started to take advantage of these discoveries upon which deciphering genetic profiles can be used to enhance medical treatment.

Download full-text PDF

Source
http://dx.doi.org/10.3109/09546634.2010.535806DOI Listing

Publication Analysis

Top Keywords

genomic expression
8
human genome
8
genome project
8
genomic profiles
8
personalizing dermatology
4
dermatology future
4
genomic
4
future genomic
4
expression profiling
4
profiling individualize
4

Similar Publications

Gastric cancer is an aggressive malignancy characterized by significant clinical heterogeneity arising from complex genetic and environmental interactions. This study employed single-cell RNA sequencing, using the 10 × Genomics platform, to analyze 262,532 cells from gastric cancer samples, identifying 32 distinct clusters and 10 major cell types, including immune cells (e.g.

View Article and Find Full Text PDF

Correlation among blastocoel fluid DNA level, apoptotic genes expression and preimplantation aneuploidy.

Reprod Fertil

January 2025

M Bazrgar, Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran., Tehran, Iran (the Islamic Republic of).

It is believed that aneuploid embryos release cell-free DNA (cfDNA) into the blastocyst cavity during the self-correction process through the apoptotic mechanism. This study aimed to develop less invasive methods for predicting ploidy status by investigating how ploidy status affects blastocoel fluid DNA (BF-DNA) levels and apoptotic gene expression as indicators of embryo viability. Human blastocysts were classified into three groups; Survivable Embryo (SE), Fatal Single and double Aneuploidy (FSDA), and Multiple Aneuploidy (MA) using array comparative genomic hybridization (array-CGH) by trophectoderm (TE) biopsy.

View Article and Find Full Text PDF

Decades of artificial selection have markedly enhanced egg production efficiency, yet the epigenetic underpinnings, notably DNA methylation dynamics in the gut, remain largely unexplored. Here, we investigate how breeds and developmental stages influence DNA methylation profiles in laying hens, and their potential relationship to laying performance and gut health. We compared two highly selected laying hen strains, Lohmann Brown-Classic (LB) and Lohmann LSL-Classic (LSL), which exhibited similar egg production but divergent physiological, metabolic, and immunological characteristics.

View Article and Find Full Text PDF

Transcriptome of Anaplastic Thyroid Cancer Reveals Two Molecular Subtypes with Distinct Tumor Microenvironment and Prognosis.

Thyroid

January 2025

Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-gu, Republic of Korea.

Although patients with anaplastic thyroid cancer (ATC) generally have a poor prognosis and there are currently no effective treatment options, survival and response to therapy vary between patients. Genomic and transcriptomic profiles of ATC have been reported; however, a comprehensive study of the tumor microenvironment (TME) of ATC is still lacking. This study aimed to elucidate the TME characteristics associated with ATC and their prognostic implications.

View Article and Find Full Text PDF

Alba domain-containing proteins are ubiquitously found in archaea and eukaryotes. By binding to either DNA, RNA, or DNA:RNA hybrids, these proteins function in genome stabilization, chromatin organization, gene regulation, and/or translational modulation. In the malaria parasite , six Alba domain proteins PfAlba1-6 have been described, of which PfAlba1 has emerged as a "master regulator" of translation during parasite intra-erythrocytic development (IED).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!