Background: Tricyclazole is a commercial fungicide used to control rice blast. As part of re-registration activities, samples of metabolites and process impurities are required. In addition, isotopically labeled tricyclazole samples are also required.

Results: Four new compounds related to tricyclazole are reported. An isotopically labeled sample of tricyclazole was prepared that contained two (15)N atoms and one (13)C atom. Radiolabeled tricyclazole with (14)C at the triazole C3 position was also synthesized. A new process impurity in technical tricyclazole was identified and synthesized. A new metabolite of tricyclazole was identified, independently synthesized and characterized by X-ray crystallography.

Conclusion: A previously unreported metabolite of tricyclazole has been identified and structurally characterized. In addition, a new process impurity has been identified by independent synthesis. Identification of these new compounds has facilitated the continued registration of this important fungicide.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.2096DOI Listing

Publication Analysis

Top Keywords

tricyclazole identified
12
tricyclazole
9
commercial fungicide
8
isotopically labeled
8
process impurity
8
metabolite tricyclazole
8
synthesis compounds
4
compounds commercial
4
fungicide tricyclazole
4
tricyclazole background
4

Similar Publications

Rice blast, a severe fungal disease, is a substantial threat to global food security, particularly in rice-oriented areas. The fungus is increasingly resistant and fast developing in nature. However, chemical fungicides are not only detrimental to the environment but eventually also lose their efficiency.

View Article and Find Full Text PDF

Wetlands are crucial ecosystems that are increasingly threatened by anthropogenic activities. L'Albufera Natural Park, the second-largest coastal wetland in Spain, faces significant pressures from surrounding agricultural lands, industrial activities, human settlements, and associated infrastructures, including treated wastewater inputs. This study aimed at (i) establishing pathways of emerging pollutants entering the natural wetland using both target and non-target screening (NTS) for management purposes, (ii) distinguishing specific contamination hotspots through Geographic Information System (GIS) and (iii) performing basic ecological risk assessment to evaluate ecosystem health.

View Article and Find Full Text PDF

Rice blast disease, caused by the fungus Magnaporthe oryzae, poses a severe threat to rice production, particularly in Asia where rice is a staple food. Concerns over fungicide resistance and environmental impact have sparked interest in exploring natural fungicides as potential alternatives. This study aimed to identify highly potent natural fungicides against M.

View Article and Find Full Text PDF

Interacted toxic mechanisms of ochratoxin A and tricyclazole on the zebrafish (Danio rerio).

Chemosphere

June 2023

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, PR China. Electronic address:

Despite the current efforts to identify the mixtures of chemical pollutants, they are often "binned" into their corresponding pollutant groups. Limited studies have investigated complex mixtures of chemical pollutants co-occurring across different groups. The combined toxic impacts of several substances become a critical consideration in toxicology because chemical combinations can exert a greater deleterious effect than the single components in the mixture.

View Article and Find Full Text PDF

Magnaporthe oryzae is one of the most notorious fungal pathogens that causes blast disease in cereals, and results in enormous loss of grain production. Many chemical fungicides are being used to control the pathogen but none of them are fully effective in controlling blast disease. Therefore, there is a demand for the discovery of a new natural biofungicide to manage the blast disease efficiently.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!