Purification and characterization of a novel thermostable xylose isomerase from Opuntia vulgaris mill.

Appl Biochem Biotechnol

School of Chemical Engineering and Bioengineering, University of Ulsan, Ulsan, 680-749, South Korea.

Published: July 2011

Thermophilic xylose isomerase from the xerophytic eukaryote Opuntia vulgaris can serve as a good alternate source of enzyme for use in the production of high fructose corn syrup. The existence of two temperature stable isoforms having optimal activity at temperatures 70 °C (T(70)) and 90 °C (T(90)), respectively, is reported here. These isoforms were purified to homogeneity using column chromatography and SDS-polyacrylamide gel electrophoretic techniques. Only the T(90) isoform was subjected to full biochemical characterization thereafter. The purified T(90) isoform was capable of converting glucose to fructose with high efficiency under the assay conditions. The enzyme at pH 7.5 exhibited a preference to yield the forward isomerization reaction. The melting temperature of the native enzyme was determined to be 90 °C employing differential scanning colorimetery. Thermostability of the enzyme protein was established through temperature-related denaturation kinetic studies. It is suggested that the thermostability and the wide pH activity of this eukaryotic enzyme will make it an advantageous and dependable alternate source of catalytic activity for protected use in the high fructose corn syrup sweetener industry.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-011-9160-zDOI Listing

Publication Analysis

Top Keywords

xylose isomerase
8
opuntia vulgaris
8
alternate source
8
high fructose
8
fructose corn
8
corn syrup
8
t90 isoform
8
enzyme
5
purification characterization
4
characterization novel
4

Similar Publications

Integrative multi-omics analysis of autism spectrum disorder reveals unique microbial macromolecules interactions.

J Adv Res

January 2025

Proteomics and Metabolomics Unit, Basic Research Department, Children's Cancer Hospital, 57357 Cairo, (CCHE-57357), Egypt; Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt. Electronic address:

Introduction: Gut microbiota alterations have been implicated in Autism Spectrum Disorder (ASD), yet the mechanisms linking these changes to ASD pathophysiology remain unclear.

Objectives: This study utilized a multi-omics approach to uncover mechanisms linking gut microbiota to ASD by examining microbial diversity, bacterial metaproteins, associated metabolic pathways and host proteome.

Methods: The gut microbiota of 30 children with severe ASD and 30 healthy controls was analyzed.

View Article and Find Full Text PDF

Engineering xylose utilization in Cupriavidus necator for enhanced poly(3-hydroxybutyrate) production from mixed sugars.

Bioresour Technol

February 2025

Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea. Electronic address:

Lignocellulosic biomass is a promising renewable feedstock for biodegradable plastics like polyhydroxyalkanoates (PHAs). Cupriavidus necator, a versatile microbial host that synthesizes poly(3-hydroxybutyrate) (PHB), the most abundant type of PHA, has been studied to expand its carbon source utilization. Since C.

View Article and Find Full Text PDF

Continuous Evolution of Protein through T7 RNA Polymerase-Guided Base Editing in .

ACS Synth Biol

January 2025

The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.

targeted mutagenesis technologies are the basis for the continuous directed evolution of specific proteins. Here, an efficient mutagenesis system (CgMutaT7) for continuous evolution of the targeted gene in was developed. First, cytosine deaminase and uracil-DNA glycosylase inhibitor were sequentially fused to T7 RNA polymerase using flexible linkers to build the CgMutaT7 system, which introduces mutations in targeted regions controlled by the T7 promoter.

View Article and Find Full Text PDF
Article Synopsis
  • Xylose, derived from lignocellulose, is a crucial renewable resource for producing valuable bioproducts like fumaric acid; optimizing its conversion is essential.
  • The study identified a genetically modified strain (TKL-4) of A. pullulans that effectively uses xylose and corncob-derived xylose to produce calcium fumarate, demonstrating higher yields compared to glucose.
  • The TKL-4 strain achieved impressive fermentation results, generating up to 88.5 g/L of calcium fumarate from xylose during a 10-liter fermentation process, showcasing its potential for eco-friendly bioproduct development.
View Article and Find Full Text PDF

Keratin-reinforced encapsulation of whole cells expressing glucose isomerase: Development of robust and reusable biocatalyst microbeads.

Int J Biol Macromol

December 2024

Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P. O. Box 3353-5111, Tehran 3353136846, Iran.

Glucose isomerase (GI) is crucial in high-fructose corn syrup production. This study introduces a novel approach to enhance GI stability and reusability through whole-cell encapsulation of Streptomyces olivochromogenes PTCC 1457 in hybrid microbeads, utilizing keratin as a multifunctional stabilizer and cross-linker. Optimal bead formation was achieved using 2 % alginate, 2-3 % CaCl, and 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!