Thermophilic xylose isomerase from the xerophytic eukaryote Opuntia vulgaris can serve as a good alternate source of enzyme for use in the production of high fructose corn syrup. The existence of two temperature stable isoforms having optimal activity at temperatures 70 °C (T(70)) and 90 °C (T(90)), respectively, is reported here. These isoforms were purified to homogeneity using column chromatography and SDS-polyacrylamide gel electrophoretic techniques. Only the T(90) isoform was subjected to full biochemical characterization thereafter. The purified T(90) isoform was capable of converting glucose to fructose with high efficiency under the assay conditions. The enzyme at pH 7.5 exhibited a preference to yield the forward isomerization reaction. The melting temperature of the native enzyme was determined to be 90 °C employing differential scanning colorimetery. Thermostability of the enzyme protein was established through temperature-related denaturation kinetic studies. It is suggested that the thermostability and the wide pH activity of this eukaryotic enzyme will make it an advantageous and dependable alternate source of catalytic activity for protected use in the high fructose corn syrup sweetener industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-011-9160-z | DOI Listing |
J Adv Res
January 2025
Proteomics and Metabolomics Unit, Basic Research Department, Children's Cancer Hospital, 57357 Cairo, (CCHE-57357), Egypt; Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt. Electronic address:
Introduction: Gut microbiota alterations have been implicated in Autism Spectrum Disorder (ASD), yet the mechanisms linking these changes to ASD pathophysiology remain unclear.
Objectives: This study utilized a multi-omics approach to uncover mechanisms linking gut microbiota to ASD by examining microbial diversity, bacterial metaproteins, associated metabolic pathways and host proteome.
Methods: The gut microbiota of 30 children with severe ASD and 30 healthy controls was analyzed.
Bioresour Technol
February 2025
Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea. Electronic address:
Lignocellulosic biomass is a promising renewable feedstock for biodegradable plastics like polyhydroxyalkanoates (PHAs). Cupriavidus necator, a versatile microbial host that synthesizes poly(3-hydroxybutyrate) (PHB), the most abundant type of PHA, has been studied to expand its carbon source utilization. Since C.
View Article and Find Full Text PDFACS Synth Biol
January 2025
The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
targeted mutagenesis technologies are the basis for the continuous directed evolution of specific proteins. Here, an efficient mutagenesis system (CgMutaT7) for continuous evolution of the targeted gene in was developed. First, cytosine deaminase and uracil-DNA glycosylase inhibitor were sequentially fused to T7 RNA polymerase using flexible linkers to build the CgMutaT7 system, which introduces mutations in targeted regions controlled by the T7 promoter.
View Article and Find Full Text PDFMicrob Cell Fact
December 2024
College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China.
Int J Biol Macromol
December 2024
Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P. O. Box 3353-5111, Tehran 3353136846, Iran.
Glucose isomerase (GI) is crucial in high-fructose corn syrup production. This study introduces a novel approach to enhance GI stability and reusability through whole-cell encapsulation of Streptomyces olivochromogenes PTCC 1457 in hybrid microbeads, utilizing keratin as a multifunctional stabilizer and cross-linker. Optimal bead formation was achieved using 2 % alginate, 2-3 % CaCl, and 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!