TSdb ( http://tsdb.cbi.pku.edu.cn ) is the first manually curated central repository that stores formatted information on the substrates of transporters. In total, 37608 transporters with 15075 substrates from 884 organisms were curated from UniProt functional annotation. A unique feature of TSdb is that all the substrates are mapped to identifiers from the KEGG Ligand compound database. Thus, TSdb links current metabolic pathway schema with compound transporter systems via the shared compounds in the pathways. Furthermore, all the transporter substrates in TSdb are classified according to their biochemical properties, biological roles and subcellular localizations. In addition to the functional annotation of transporters, extensive compound annotation that includes inhibitor information from the KEGG Ligand and BRENDA databases has been integrated, making TSdb a useful source for the discovery of potential inhibitory mechanisms linking transporter substrates and metabolic enzymes. User-friendly web interfaces are designed for easy access, query and download of the data. Text and BLAST searches against all transporters in the database are provided. We will regularly update the substrate data with evidence from new publications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11427-010-4125-y | DOI Listing |
J Bacteriol
January 2025
Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Department of Microbiology and Biotechnology, University of Tübingen, Tübingen, Baden-Württemberg, Germany.
Unlabelled: is well adapted to survive and persist in the infected host, escaping the host's immune response. Since polyamines such as spermine, which are synthesized by infected macrophages, are able to inhibit the growth of , the pathogen needs strategies to cope with these toxic metabolites. The actinomycete , a close relative of makes use of a gamma-glutamylation pathway to functionally neutralize spermine.
View Article and Find Full Text PDFSci Rep
January 2025
School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China.
MXenes, as a novel two-dimensional lamellar material, has attracted much attention. However, MXenes lamellar are prone to collapse and stacking under hydrogen bonding and interlayer van der Waals forces, which affects their electrochemical and capacitive deionization performance. A three-dimensional Ni-1,3,5-benzenetricarboxylate/TiCT (Ni-BTC/TiCT) composite electrode material was developed to enhance the electrochemical and capacitive deionization performance.
View Article and Find Full Text PDFLangmuir
January 2025
Ningbo Key Lab of Polymer Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315211 Ningbo, P. R. China.
Solar-driven desalination technology is currently an important way to obtain freshwater resources. Significantly, porous materials are used as substrate materials of interface solar evaporator, and their specific impact of water transport property and thermal management during evaporation is worth exploring. In this paper, poly(vinyl alcohol) (PVA) sponges were prepared by a chemical foaming method, adjusted the PVA polymerization degree, and formaldehyde-hydroxyl ratio to regulate the pore size, and polypyrrole (PPy) was grown in situ on the surface skeleton of PVA sponge to construct a new interfacial solar evaporator (PPy/PVA) with different pore structures.
View Article and Find Full Text PDFJDS Commun
January 2025
Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824.
Dairy cows with clinical ketosis (CK) exhibit metabolic changes, including intense adipose tissue (AT) lipolysis and systemic insulin resistance, that increase plasma BHB and free fatty acids (FFA). Cows with CK also have systemic inflammation, predisposing them to inflammatory and infectious diseases. This inflammatory process is modulated in part by oxidized fatty acids (oxylipins) that regulate all aspects of inflammation.
View Article and Find Full Text PDFCommun Biol
January 2025
Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
P4-ATPases, a subfamily of the P-type ATPase superfamily, play a crucial role in translocating membrane lipids from the exoplasmic/luminal leaflet to the cytoplasmic leaflet. This process generates and regulates transbilayer lipid asymmetry. These enzymes are conserved across all eukaryotes, and the human genome encodes 14 distinct P4-ATPases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!