Influence of interstitial bone microcracks on strain-induced fluid flow.

Biomech Model Mechanobiol

Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France.

Published: December 2011

It is well known that microcracks act as a stimulus for bone remodelling, initiating resorption by osteoclasts and new bone formation by osteoblasts. Moreover, microcracks are likely to alter the fluid flow and convective transport through the bone tissue. This paper proposes a quantitative evaluation of the strain-induced interstitial fluid velocities developing in osteons in presence of a microcrack in the interstitial bone tissue. Based on Biot theory in the low-frequency range, a poroelastic model is carried out to study the hydro-mechanical behaviour of cracked osteonal tissue. The finite element results show that the presence of a microcrack in the interstitial osteonal tissue may drastically reduce the fluid velocity inside the neighbouring osteons. This fluid inactive zone inside osteons can cover up to 10% of their surface. Consequently, the fluid environment of bone mechano-sensitive cells is locally modified.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10237-011-0287-1DOI Listing

Publication Analysis

Top Keywords

interstitial bone
8
fluid flow
8
bone tissue
8
presence microcrack
8
microcrack interstitial
8
osteonal tissue
8
bone
6
fluid
6
influence interstitial
4
bone microcracks
4

Similar Publications

Zonal Characteristics of Collagen Ultrastructure and Responses to Mechanical Loading in Articular Cartilage.

Acta Biomater

January 2025

Biomedical Engineering, College of Engineering, Mathematics and Physical Sciences, University of Exeter, UK. Electronic address:

The biomechanical properties of articular cartilage arise from a complex bioenvironment comprising hierarchically organised collagen networks within the extracellular matrix (ECM) that interact with the proteoglycan-rich interstitial fluid. This network features a depth-dependent fibril organisation across different zones. Understanding how collagen fibrils respond to external loading is key to elucidating the mechanisms behind lesion and managing degenerative conditions like osteoarthritis.

View Article and Find Full Text PDF

Adaptation to existence outside the womb is a key event in the life of a mammal. The absence of macrophages in rats with a homozygous mutation in the colony-stimulating factor 1 receptor (Csf1r) gene (Csf1rko) severely compromises pre-weaning somatic growth and maturation of organ function. Transfer of wild-type bone marrow cells (BMT) at weaning rescues tissue macrophage populations permitting normal development and long-term survival.

View Article and Find Full Text PDF

Lung transplantation and bone health: A narrative review.

J Heart Lung Transplant

January 2025

Department of Medicine, University Health Network and Sinai Health System, University of Toronto, Toronto, ON, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada; Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada. Electronic address:

Bone health after lung transplantation has not been comprehensively reviewed in over two decades. This narrative review summarizes available literature on bone health in the context of lung transplantation, including epidemiology, presentation and post-operative management. Osteoporosis is reported in approximately 30-50% of lung transplant candidates, largely due to disease-related impact on bone and lifestyle, and corticosteroid-related effects during end-stage lung disease (interstitial lung diseases, chronic obstructive pulmonary disease, and historically cystic fibrosis).

View Article and Find Full Text PDF

Advanced glycation end products (AGEs) accumulate in various tissues, including bone, due to aging and conditions like diabetes mellitus. To investigate the effects of AGEs on bone material quality and biomechanical properties, an study utilizing human tibial cortex, sectioned into 90 beams, and randomly assigned to three mechanical test groups was performed. Each test group included ribose ( = 0.

View Article and Find Full Text PDF

Background: Li-Fraumeni syndrome (LFS) is an autosomal dominant tumor predisposition syndrome characterized by a high familial incidence of various malignancies. It results from pathogenic/likely pathogenic heterozygous constitutional variants of the TP53 gene. Due to impaired DNA damage repair, conventional cytotoxic therapies or radiotherapy should be avoided whenever feasible to mitigate the high incidence of treatment-related secondary malignancies in these patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!