Abdominal fat-related activation of the innate immune system and insulin resistance (IR) are implicated in the pathogenesis of cardiovascular diseases. Recent data support an important role of the adaptive immune system as well. In this study, we investigate the association between waist circumference and markers of systemic adaptive immune activation, and the potential mediating role of innate immune activation and/or IR herein. The study population consisted of 477 (304 men) individuals (mean age: 59.4 ± 7.0 years) in whom waist circumference, HOMA2-IR (IR derived from homeostasis model assessment), and markers of innate (C-reactive protein (CRP), interleukin (IL)-6, serum amyloid A (SAA)) and adaptive (neopterin, soluble CD25 (sCD25)) immune activation were measured. These markers were compiled into an adaptive and innate immune activation score by averaging the respective z-scores. After adjustments for age, sex, glucose metabolism, smoking status, prior cardiovascular disease, and other risk factors, waist circumference was associated with the adaptive (standardized regression coefficient β = 0.12 (95% confidence intervals: 0.04-0.20)) and the innate immune activation scores (β = 0.24 (0.17-0.31)), and with HOMA2-IR (β = 0.49 (0.42-0.56)). The innate immune activation score and HOMA2-IR were also positively associated with the adaptive immune activation score (β = 0.31 (0.21-0.40) and β = 0.11 (0.02-0.21), respectively). The association between waist circumference and the adaptive immune activation score was completely abolished when further adjusted for innate immune activation and HOMA2-IR (to β = -0.01 (-0.10-0.08)), and the specific mediation "effects" attributable to each of these variables were 58% and 42%, respectively. We conclude that abdominal obesity is associated with systemic adaptive immune activation and that innate immune activation and IR constitute independent and equally important pathways explaining this association.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/oby.2010.337 | DOI Listing |
Orphanet J Rare Dis
January 2025
Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
Background: Inclusion Body Myositis is an acquired muscle disease. Its pathogenesis is unclear due to the co-existence of inflammation, muscle degeneration and mitochondrial dysfunction. We aimed to provide a more advanced understanding of the disease by combining multi-omics analysis with prior knowledge.
View Article and Find Full Text PDFNat Med
January 2025
Department of Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Bambino Gesù Children's Hospital, Rome, Italy.
Allogeneic chimeric antigen receptor (CAR) T cells targeting disialoganglioside-GD2 (ALLO_GD2-CART01) could be a therapeutic option for patients with relapsed or refractory, high-risk neuroblastoma (r/r HR-NB) whose tumors did not respond to autologous GD2-CART01 or who have profound lymphopenia. We present a case series of five children with HR-NB refractory to more than three different lines of therapy who received ALLO_GD2-CART01 in a hospital exemption setting. Four of them had previously received allogeneic hematopoietic stem cell transplantation.
View Article and Find Full Text PDFCommun Biol
January 2025
CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France.
We have assessed antiviral activity and induction of protective immunity of fusion-inhibitory lipopeptides derived from the C-terminal heptad-repeat domain of SARS-CoV-2 spike glycoprotein in transgenic mice expressing human ACE2 (K18-hACE2). The lipopeptides block SARS-CoV-2 infection in cell lines and lung-derived organotypic cultures. Intranasal administration in mice allows the maintenance of homeostatic transcriptomic immune profile in lungs, prevents body-weight loss, decreases viral load and shedding, and protects mice from death caused by SARS-CoV-2 variants.
View Article and Find Full Text PDFNature
January 2025
Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Tertiary lymphoid structures (TLSs) are de novo ectopic lymphoid aggregates that regulate immunity in chronically inflamed tissues, including tumours. Although TLSs form due to inflammation-triggered activation of the lymphotoxin (LT)-LTβ receptor (LTβR) pathway, the inflammatory signals and cells that induce TLSs remain incompletely identified. Here we show that interleukin-33 (IL-33), the alarmin released by inflamed tissues, induces TLSs.
View Article and Find Full Text PDFNature
January 2025
Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
Identifying phase-separated structures remains challenging, and effective intervention methods are currently lacking. Here we screened for phase-separated proteins in breast tumour cells and identified forkhead (FKH) box protein M1 (FOXM1) as the most prominent candidate. Oncogenic FOXM1 underwent liquid-liquid phase separation (LLPS) with FKH consensus DNA element, and compartmentalized the transcription apparatus in the nucleus, thereby sustaining chromatin accessibility and super-enhancer landscapes crucial for tumour metastatic outgrowth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!