Fermi liquid theory, the standard theory of metals, has been challenged by a number of observations of anomalous metallic behavior found in the vicinity of a quantum phase transition. The breakdown of the Fermi liquid is accomplished by fine-tuning the material to a quantum critical point by using a control parameter such as the magnetic field, pressure, or chemical composition. Our high-precision magnetization measurements of the ultrapure f-electron-based superconductor β-YbAlB(4) demonstrate a scaling of its free energy that is indicative of zero-field quantum criticality without tuning in a metal. The breakdown of Fermi liquid behavior takes place in a mixed-valence state, which is in sharp contrast with other known examples of quantum critical f-electron systems that are magnetic Kondo lattice systems with integral valence.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1197531DOI Listing

Publication Analysis

Top Keywords

fermi liquid
12
quantum criticality
8
criticality tuning
8
breakdown fermi
8
quantum critical
8
quantum
5
tuning mixed
4
mixed valence
4
valence compound
4
compound beta-ybalb4
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!