Dosimetric parameters of the new design (103)Pd brachytherapy source based on Monte Carlo study.

Phys Med

Department of Nuclear Engineering, Science and Research Branch, Islamic Azad University, 1477893855, Tehran, Iran.

Published: January 2012

In this study version 5 of the MCNP photon transport simulation was used to calculate the dosimetric parameters for new palladium brachytherapy source design following AAPM Task Group No. 43U1 report. The internal source components include four resin beads of 0.6 mm diameters with (103)Pd uniformly absorbed inside and one cylindrical copper marker with 1.5 mm length. The resin beads and marker are then encapsulated within 0.8 mm in diameter and 4.5 mm long cylindrical capsule of titanium. The dose rate constant, Λ, line and point-source radial dose function, g(L)(r) and g(P)(r), and the anisotropy function, F(r,θ) of the IR01-(103)Pd seed have been calculated at distances from 0.25 to 5 cm. All the results are in good agreement with previously published thermoluminescence-dosimeter measured values [3] for the source. The dosimetric parameters calculated in this work showed that in dosimetry point of view, the IR01-(103)Pd seed is suitable for use in brachytherapy of prostate cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmp.2010.12.005DOI Listing

Publication Analysis

Top Keywords

dosimetric parameters
12
brachytherapy source
8
resin beads
8
ir01-103pd seed
8
parameters design
4
design 103pd
4
103pd brachytherapy
4
source
4
source based
4
based monte
4

Similar Publications

Purpose: Conventional radiotherapy (CRT) has limited local control and poses a high risk of severe toxicity in large lung tumors. This study aimed to develop an integrated treatment plan that combines CRT with lattice boost radiotherapy (LRT) and monitors its dosimetric characteristics.

Methods: This study employed cone-beam computed tomography from 115 lung cancer patients to develop a U-Net +  + deep learning model for generating synthetic CT (sCT).

View Article and Find Full Text PDF

Background: This retrospective study addresses the role of operator and fluoroscopy equipment in reducing patient radiation exposure in the Cath lab.

Methods: Data from 99,400 procedures performed in our institution between 2007 and 2019 were reviewed. Dosimetric parameters included reference point air kerma (K), Kerma Area Product (P), fluoroscopic time, and contrast volume.

View Article and Find Full Text PDF

Background: Stereotactic body radiation therapy (SBRT) is crucial for treating early-stage inoperable non-small cell lung cancer (NSCLC) due to its precision and high-dose delivery. This study aimed to investigate the dosimetric deviations in gated (GR) versus non-gated radiotherapy (NGR), analyzing the impact of tumor location, target volume, and tumor motion range on dose distribution accuracy.

Methods: Sixty patients treated with either gated (n=30) or non-gated (n=30) SBRT for early-stage NSCLC were retrospectively analyzed.

View Article and Find Full Text PDF

Axillary dose restriction (ADR) is rarely implemented in breast cancer radiotherapy by radiation oncologists to minimize exposure to organs at risk (OARs), particularly the axilla. This prospective randomized controlled study aims to evaluate the efficacy of ADR in improving plan quality (PQ) and its impact on acute radiation dermatitis (ARD) in breast cancer radiotherapy. The study recruited breast cancer patients who required postoperative radiotherapy but did not have an indication for axillary irradiation.

View Article and Find Full Text PDF

This study evaluates the dosimetric impact of arc simulation angular resolution in VMAT-based Single Isocentre Multiple Target (SIMT) SRS, focusing on their dependence on target size, isocentre distance, number of arcs, and arc type. A phantom study analysed angular resolution (0.5°, 1°, 2°) effects on dosimetric accuracy for PTVs of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!