Background And Purpose: The effects of metformin, an antidiabetic agent that improves insulin sensitivity, on endothelial function have not been fully elucidated. This study was designed to assess the effect of metformin on impaired endothelial function, oxidative stress, inflammation and advanced glycation end products formation in type 2 diabetes mellitus.

Experimental Approach: Goto-Kakizaki (GK) rats, an animal model of nonobese type 2 diabetes, fed with normal and high-fat diet during 4 months were treated with metformin for 4 weeks before evaluation. Systemic oxidative stress, endothelial function, insulin resistance, nitric oxide (NO) bioavailability, glycation and vascular oxidative stress were determined in the aortic rings of the different groups. A pro-inflammatory biomarker the chemokine CCL2 (monocyte chemoattractant protein-1) was also evaluated.

Key Results: High-fat fed GK rats with hyperlipidaemia showed increased vascular and systemic oxidative stress and impaired endothelial-dependent vasodilatation. Metformin treatment significantly improved glycation, oxidative stress, CCL2 levels, NO bioavailability and insulin resistance and normalized endothelial function in aorta.

Conclusion And Implications: Metformin restores endothelial function and significantly improves NO bioavailability, glycation and oxidative stress in normal and high-fat fed GK rats. This supports the concept of the central role of metformin as a first-line therapeutic to treat diabetic patients in order to protect against endothelial dysfunction associated with type 2 diabetes mellitus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087142PMC
http://dx.doi.org/10.1111/j.1476-5381.2011.01230.xDOI Listing

Publication Analysis

Top Keywords

endothelial function
24
oxidative stress
24
type diabetes
12
metformin restores
8
restores endothelial
8
normal high-fat
8
systemic oxidative
8
insulin resistance
8
bioavailability glycation
8
high-fat fed
8

Similar Publications

A Comprehensive Atlas of AAV Tropism in the Mouse.

Mol Ther

January 2025

Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address:

Gene therapy with Adeno-Associated Virus (AAV) vectors requires knowledge of their tropism within the body. Here we analyze the tropism of ten naturally occurring AAV serotypes (AAV3B, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAVrh8, AAVrh10 and AAVrh74) following systemic delivery into male and female mice. A transgene expressing ZsGreen and Cre recombinase was used to identify transduction in a cell-dependent manner based on fluorescence.

View Article and Find Full Text PDF

The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.

View Article and Find Full Text PDF

Thrombolytic efficacy and safety of recombinant scu-PA in a rabbit retinal vein occlusion model.

Eur J Pharmacol

January 2025

Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital. Electronic address:

Retinal vein occlusion (RVO) has become the second most common retinal vascular disease after diabetic retinopathy. Existing therapeutic approaches, including intravitreal injection of antivascular endothelial growth factors (anti-VEGFs) and/or glucocorticoids and laser therapy, primarily address secondary macular edema and neovascularisation. However, these strategies do not address the underlying cause of the disease and may have harmful side effects.

View Article and Find Full Text PDF

The glycocalyx and its associated endothelial surface layer which lines all cell membranes and most tissues, dwarfs the phospholipid membrane of cells in extent. Its major components are sulphated polymers like heparan and chondroitin sulphates and hyaluronic acid. These form a fuzzy layer of unknown structure and function.

View Article and Find Full Text PDF

Synergistic effects of mTOR inhibitors with VEGFR3 inhibitors on the interaction between TSC2-mutated cells and lymphatic endothelial cells.

Sci China Life Sci

January 2025

Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.

Lymphangioleiomyomatosis (LAM) is a rare neoplastic disease affecting the lung, kidney, and lymphatic system with a molecular mechanism of tuberous sclerosis complex 2 (TSC2) mutations. Vascular endothelial growth factor D (VEGF-D), a ligand for vascular endothelial growth factor receptor 3 (VEGFR3), is a diagnostic biomarker of LAM and is associated with lymphatic circulation abnormalities. This study explored the interaction between LAM cells and lymphatic endothelial cells (LECs) and the effects of rapamycin on this interaction, which may help to identify new targets for LAM treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!