Non-allelic homologous recombination (NAHR) between segmental duplications in proximal chromosome 15q breakpoint (BP) regions can lead to microdeletions and microduplications. Several individuals with deletions flanked by BP3 and BP4 on 15q13, immediately distal to, and not including the Prader-Willi/Angelman syndrome (PW/AS) critical region and proximal to the BP4-BP5 15q13.3 microdeletion syndrome region, have been reported; however, because the deletion has also been found in normal relatives, the significance of these alterations is unclear. We have identified six individuals with deletions limited to the BP3-BP4 interval and an additional four individuals with deletions of the BP3-BP5 interval from 34 046 samples submitted for clinical testing by microarray-based comparative genomic hybridization (aCGH). Of four individuals with BP3-BP4 deletions for whom parental testing was conducted, two were apparently de novo and two were maternally inherited. A comparison of clinical features, available for five individuals in our study (four with deletions within BP3-BP4 and one with a BP3-BP5 deletion), with those in the literature show common features of short stature and/or failure to thrive, microcephaly, hypotonia, and premature breast development in some individuals. Although the BP3-BP4 deletion does not yet demonstrate statistically significant enrichment in abnormal populations compared with control populations, the presence of common clinical features among probands and the presence of genes with roles in development and nervous system function in the deletion region suggest that this deletion may have a role in abnormal phenotypes in some individuals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3083619PMC
http://dx.doi.org/10.1038/ejhg.2010.237DOI Listing

Publication Analysis

Top Keywords

individuals deletions
12
deletions flanked
8
abnormal phenotypes
8
individuals bp3-bp4
8
clinical features
8
individuals
7
deletions
6
deletion
5
flanked breakpoints
4
breakpoints 15q13
4

Similar Publications

Unlabelled: is an opportunistic pathogen capable of causing severe infections in immunocompromised individuals, who often require prolonged antibiotic therapy. The emergence of carbapenemase-producing has further complicated the management of nosocomial infections, limiting therapeutic options. Cefiderocol has recently emerged as a promising antipseudomonal agent, using the bacterial iron transport system to gain entry into the cell; however, there have been reports of resistant to cefiderocol.

View Article and Find Full Text PDF

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children, presenting with heterogeneous clinical and molecular subtypes. While gene fusions are predominantly associated with alveolar RMS, spindle cell RMS, especially congenital and intraosseous variants, are also linked to specific gene fusions. Furthermore, recently, FGFR1 kinase-driven RMSs were published.

View Article and Find Full Text PDF

An Efficient Method for Immortalizing Mouse Embryonic Fibroblasts by CRISPR-mediated Deletion of the Gene.

Bio Protoc

January 2025

Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA, USA.

Mouse embryonic fibroblasts (MEFs) derived from genetically modified mice are a valuable resource for studying gene function and regulation. The MEF system can also be combined with rescue studies to characterize the function of mutant genes/proteins, such as disease-causing variants. However, primary MEFs undergo senescence soon after isolation and passaging, making long-term genetic manipulations difficult.

View Article and Find Full Text PDF

This study aimed to explore the mechanisms underlying T-cell differentiation in asthma. Flow cytometry was performed to detect Th cells. LC-MS/MS was performed to assess lipid metabolism.

View Article and Find Full Text PDF

Introduction: China implemented a dynamic zero-COVID strategy to curb viral transmission in response to the coronavirus disease 2019 (COVID-19) pandemic. This strategy was designed to inhibit mutation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19. This study explores the dynamics of viral evolution under stringent non-pharmaceutical interventions (NPIs) through real-world observations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!