A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The mechanical axes of the wrist are oriented obliquely to the anatomical axes. | LitMetric

The mechanical axes of the wrist are oriented obliquely to the anatomical axes.

J Bone Joint Surg Am

Bioengineering Laboratory, Department of Orthopaedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, 1 Hoppin Street, CORO West Suite 404, Providence, RI 02903, USA.

Published: January 2011

Background: the complex motions of the wrist are described in terms of four anatomical directions that are accomplished through the multiple articulations of the carpus. With minimal tendinous insertions, the carpus is primarily a passive structure. This emphasizes the importance of its mechanical properties, which few studies have examined to date. The purpose of the present study was to determine the mechanical properties of the wrist in twenty-four different directions of wrist motion.

Methods: the moment-rotation mechanical behavior of six fresh-frozen cadaver wrists was determined in four directions: flexion, extension, ulnar deviation, and radial deviation. Twenty other directions that were a combination of these anatomical directions were also studied. A custom-designed jig was interfaced with a standard materials testing system to apply unconstrained moments. Moments of ± 2 Nm were applied, and the moment-rotation data were recorded and analyzed to determine the neutral zone, range of motion, and stiffness values as well as the orientation of the envelope of these values.

Results: the envelope of wrist range-of-motion values was ellipsoidal in shape and was oriented obliquely (p < 0.001) to the direction of pure flexion-extension by a mean (and standard deviation) of 26.6° ± 4.4°. The largest wrist range of motion was a mean of 111.5° ± 10.2°, in the direction of ulnar flexion, 30° from pure flexion. The largest stiffness (mean, 0.4 Nm/deg) was in the direction of radial flexion, while the smallest stiffness (mean, 0.15 Nm/deg) was in the direction of ulnar flexion.

Conclusions: the mechanical axes of the wrist are oriented obliquely to the anatomical axes. The primary mechanical direction is one of radial extension and ulnar flexion, a direction along a path of the dart thrower's wrist motion.

Clinical Relevance: understanding the mechanical function of the wrist can aid clinical treatment decisions, arthroplasty, and implant designs. The findings of this study provide new evidence that the mechanical axes of the wrist are not collinear with the anatomical axes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3016043PMC
http://dx.doi.org/10.2106/JBJS.I.01222DOI Listing

Publication Analysis

Top Keywords

mechanical axes
12
axes wrist
12
oriented obliquely
12
anatomical axes
12
wrist
10
mechanical
8
wrist oriented
8
obliquely anatomical
8
anatomical directions
8
mechanical properties
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!