GABA(A) receptors mediate the action of many clinically important drugs interacting with different binding sites. For some potential binding sites, no interacting drugs have yet been identified. Here, we established a steric hindrance procedure for the identification of drugs acting at the extracellular α1+β3- interface, which is homologous to the benzodiazepine binding site at the α1+γ2- interface. On screening of >100 benzodiazepine site ligands, the anxiolytic pyrazoloquinoline 2-p-methoxyphenylpyrazolo[4,3-c]quinolin-3(5H)-one (CGS 9895) was able to enhance GABA-induced currents at α1β3 receptors from rat. CGS 9895 acts as an antagonist at the benzodiazepine binding site at nanomolar concentrations, but enhances GABA-induced currents via a different site present at α1β3γ2 and α1β3 receptors. By mutating pocket-forming amino acid residues at the α1+ and the β3- side to cysteines, we demonstrated that covalent labeling of these cysteines by the methanethiosulfonate ethylamine reagent MTSEA-biotin was able to inhibit the effect of CGS 9895. The inhibition was not caused by a general inactivation of GABA(A) receptors, because the GABA-enhancing effect of ROD 188 or the steroid α-tetrahydrodeoxycorticosterone was not influenced by MTSEA-biotin. Other experiments indicated that the CGS 9895 effect was dependent on the α and β subunit types forming the interface. CGS 9895 thus represents the first prototype of drugs mediating benzodiazepine-like modulatory effects via the α+β- interface of GABA(A) receptors. Since such binding sites are present at αβ, αβγ, and αβδ receptors, such drugs will have a much broader action than benzodiazepines and might become clinical important for the treatment of epilepsy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3182524PMC
http://dx.doi.org/10.1523/JNEUROSCI.5012-10.2011DOI Listing

Publication Analysis

Top Keywords

cgs 9895
20
gabaa receptors
12
binding sites
12
benzodiazepine binding
8
binding site
8
gaba-induced currents
8
α1β3 receptors
8
drugs
6
receptors
6
interface
5

Similar Publications

Mid-latitudinal habitable environment for marine eukaryotes during the waning stage of the Marinoan snowball glaciation.

Nat Commun

April 2023

State Key Laboratory of Biogeology and Environmental Geology, School of Earth Science, China University of Geosciences, Wuhan, 430074, China.

During the Marinoan Ice Age (ca. 654-635 Ma), one of the 'Snowball Earth' events in the Cryogenian Period, continental icesheets reached the tropical oceans. Oceanic refugia must have existed for aerobic marine eukaryotes to survive this event, as evidenced by benthic phototrophic macroalgae of the Songluo Biota preserved in black shales interbedded with glacial diamictites of the late Cryogenian Nantuo Formation in South China.

View Article and Find Full Text PDF

Synthesis of New GABA Receptor Modulator with Pyrazolo[1,5-a]quinazoline (PQ) Scaffold.

Int J Mol Sci

March 2019

Dipartimento Neurofarba, sezione Farmaceutica e Nutraceutica, Università di Firenze, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy.

We previously published a series of 8-methoxypirazolo[1,5-a]quinazolines (PQs) and their 4,5-dihydro derivatives (4,5()PQ) bearing the (hetero)arylalkylester group at position 3 as ligands at the γ-aminobutyric type A (GABA) subtype receptor. Continuing the study in this field, we report here the design and synthesis of 3-(hetero)arylpyrazolo[1,5-a]quinazoline and 3-(hetero)aroylpyrazolo[1,5-a]quinazoline 8-methoxy substituted as interesting analogs of the above (hetero)arylalkylester, in which the shortening or the removal of the linker between the 3-(hetero)aryl ring and the PQ was performed. Only compounds that are able to inhibit radioligand binding by more than 80% at 10 μM have been selected for electrophysiological studies on recombinant α1β2γ2L GABA receptors.

View Article and Find Full Text PDF

Molecular mode of action of CGS 9895 at α1 β2 γ2 GABAA receptors.

J Neurochem

September 2016

Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.

γ-aminobutyric type A (GABAA ) receptors are the main inhibitory neurotransmitter receptors in the brain and are targets for numerous clinically important drugs such as benzodiazepines, anxiolytics, and anesthetics. Previously, pyrazoloquinoline 2-p-methoxyphenylpyrazolo [4,3-c] quinolin-3(5H)-one (CGS 9895) was described as a positive allosteric modulator acting through the α+/β- interface in the extracellular domain of GABAA receptors. The localization of the binding site was based on a steric hindrance approach, rather than on direct effects of point mutations.

View Article and Find Full Text PDF

Background And Purpose: GABAA receptors are the major inhibitory neurotransmitter receptors in the mammalian brain and the target of many clinically important drugs interacting with different binding sites. Recently, we demonstrated that CGS 9895 (2-(4-methoxyphenyl)-2H-pyrazolo[4,3-c]quinolin-3(5H)-one) elicits a strong and subtype-dependent enhancement of GABA-induced currents via a novel drug-binding site at extracellular αx+βy- (x = 1-6, y = 1-3) interfaces. Here, we investigated 16 structural analogues of CGS 9895 for their ability to modulate GABA-induced currents of various GABAA receptor subtypes.

View Article and Find Full Text PDF

Background And Purpose: GABAA receptors are the major inhibitory neurotransmitter receptors in the mammalian brain and the target of many clinically important drugs interacting with different binding sites. Recently, we demonstrated that CGS 9895 (2-(4-methoxyphenyl)-2H-pyrazolo[4,3-c]quinolin-3(5H)-one) acts as a null modulator (antagonist) at the high affinity benzodiazepine binding site, but in addition elicits a strong enhancement of GABA-induced currents via a novel drug binding site at the extracellular α+β- interface. Here, we investigated 32 structural analogues of CGS 9895 for their ability to mediate their effects via the α1+β3- interface of GABAA receptors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!