A highly effective kernel-based strategy used in machine learning is to transform the input space into a new "feature" space where nonlinear problems become linear and more readily solvable with efficient linear techniques. We propose that a similar "problem-linearization" strategy is used by the neocortical input layer 4 to reduce the difficulty of learning nonlinear relations between the afferent inputs to a cortical column and its to-be-learned upper layer outputs. The key to this strategy is the presence of broadly tuned feed-forward inhibition in layer 4: it turns local layer 4 domains into functional analogs of radial basis function networks, which are known for their universal function approximation capabilities. With the use of a computational model of layer 4 with feed-forward inhibition and Hebbian afferent connections, self-organized on natural images to closely match structural and functional properties of layer 4 of the cat primary visual cortex, we show that such layer-4-like networks have a strong intrinsic tendency to perform input transforms that automatically linearize a broad repertoire of potential nonlinear functions over the afferent inputs. This capacity for pluripotent function linearization, which is highly robust to variations in network parameters, suggests that layer 4 might contribute importantly to sensory information processing as a pluripotent function linearizer, performing such a transform of afferent inputs to a cortical column that makes it possible for neurons in the upper layers of the column to learn and perform their complex functions using primarily linear operations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.00708.2010 | DOI Listing |
Curr Top Dev Biol
January 2025
University of Michigan, Department of Pharmacology, Caswell Diabetes Institute, Ann Arbor, MI, United States. Electronic address:
All-trans retinoic acid (ATRA) signaling is essential in numerous different biological contexts. This review highlights the diverse roles of ATRA during development, function, and diseases of the pancreas. ATRA is essential to specify pancreatic progenitors from gut tube endoderm, endocrine and exocrine differentiation, and adult islet function.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea. Electronic address:
Human embryonic stem cells (hESCs) and their extracellular vesicles (EVs) hold significant potential for tissue repair and regeneration. Neural stem cells (NSCs) in the adult brain often acquire senescent phenotypes after ischemic injuries, releasing neurodegenerative senescence-associated secretory phenotype factors. In this study, we investigated the senotherapeutic effects of hESC-EVs on NSCs and confirmed their neuroprotective effects in neurons via rejuvenation of NSC secretions.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China. Electronic address:
Formaldehyde (FA) is a hazardous pollutant causing acute and chronic poisoning in humans. While plants provide a natural method of removing FA pollution, their ability to absorb and degrade FA is limited. To improve the ability of plants to degrade FA, we introduced the E.
View Article and Find Full Text PDFTissue Eng Part C Methods
January 2025
CiRA Foundation, Research and Development Center, Osaka, Japan.
Mouse embryonic fibroblasts (MEFs) have been widely used as feeder cells in embryonic stem cell cultures because they can mimic the embryonic microenvironment. Milk fat globule-epidermal growth factor 8 (MFGE8) is expressed during mouse gonadal development, 10.5-13.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Children's Medical Center, Department of Pediatric Neurology, Peking University First Hospital, Beijing, China.
Aims: Alexander disease (AxD) is a leukodystrophy caused by mutations in the astrocytic filament gene GFAP. There are currently no effective treatments for AxD. Previous studies have rarely established AxD models with the patient's original GFAP mutations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!