The genus Stenotrophomonas is genetically and phenotypically heterogeneous. Of the nine species now accepted, only S. maltophilia is of clinical importance. Based on DNA-sequences of seven house keeping genes, it encompasses genogroups of DNA-similarity below 97% that predominantly comprise strains of environmental origin. Therefore, in order to unravel the uneven distribution of environmental isolates within genogroups and reveal genetic relationships within the genus, there is need for an easy and reliable approach for the identification and delineation of Stenotrophomonas spp. In this first study, a multi-locus sequence analysis (MLSA) with seven housekeeping genes (atpD, gapA, guaA, mutM, nuoD, ppsA and recA) was applied for analysis of 21 S. maltophilia of environmental origin, Stenotrophomonas spp. and related genera. The genotypic findings were compared with the results of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) analyses. Our MLSA provided reliable inter- and intra-species discrimination of all tested isolates that correlated with the MALDI-TOF mass spectrometry data. One distantly related genogroup of environmental S. maltophilia strains needs to be reclassified as S. rhizophila. However, there are still remaining delineated S. maltophilia genogroups of predominantly environmental origin. Our data provide further evidence that 'Pseudomonas'beteli is a heterotypic synonym of S. maltophilia. Based on MLSA and MALDI-TOF data, Stenotrophomonas sp. (DSM 2408) belongs to S. koreensis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.syapm.2010.11.011 | DOI Listing |
Int Microbiol
January 2025
Phytopathology Unit, Department of Plant Protection, Ecole Nationale d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, 50001, Meknes, Morocco.
Olive trees are susceptible to various diseases, notably root rot caused by Pythium spp., which presents significant challenges to cultivation. Conventional chemical control methods have limitations, necessitating exploration of eco-friendly alternatives like biological control strategies.
View Article and Find Full Text PDFNutrients
December 2024
IFF, Health & Biosciences, Sokeritehtaantie 20, 02460 Kantvik, Finland.
Background/objectives: Ergothioneine (EGT) is an effective antioxidant that animals cannot produce and has an important anti-inflammatory role in cell protection, which can help lower the risk of various diseases. In this study, we investigated the potential role of gut microbiota in the production of EGT, which was found to increase in the mouse liver after dietary supplementation with betaine (BET) or polydextrose (PDX).
Methods: The effects of BET and PDX on the gut microbiota and tissue EGT content were investigated using a diet-induced obese mouse model and simulated fermentation in the human colon.
Braz J Microbiol
January 2025
Department of Microbiology, Faculty of Science, Ain shams University, El-Khalyfa El-Mamoun Street, Abbasya, Cairo, Egypt.
Hospital surfaces are often contaminated with multidrug-resistant pathogenic bacteria that cause healthcare-associated infections and lead to increased mortality and morbidity. There is a need for new alternative antibacterial agents to overcome antibiotic resistance. Azadirachta indica and Simmondsia chinensis have been found to possess antibacterial activity and medicinal value.
View Article and Find Full Text PDFHealth Sci Rep
December 2024
Department of Clinical Laboratory Medicine Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine Shanghai People's Republic of China.
Int Microbiol
November 2024
Department of Botany & Microbiology College of Science, King Saud University, P.O Box 2455, 11451, Riyadh, Saudi Arabia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!