Group IVA cytosolic phospholipase A(2) (cPLA(2)α) catalyzes the first step in the arachidonic acid cascade leading to the synthesis of important lipid mediators, the prostaglandins and leukotrienes. We previously described a patient deficient in cPLA(2)α activity, which was associated with mutations in both alleles encoding the enzyme. In this paper, we describe the biochemical characterization of each of these mutations. Using saturating concentrations of calcium, we showed that the R485H mutant was nearly devoid of any catalytic activity, that the S111P mutation did not affect the enzyme activity, and that the known K651R polymorphism was associated with activity slightly higher than that of the wild type. Using MDCK cells, we showed that translocation to the Golgi in response to serum activation was impaired for the S111P mutant but not for the other mutants. Using immortalized mouse lung fibroblasts lacking endogenous cPLA(2)α activity, we showed that both mutations S111P and R485H/K651R caused a profound defect in the enzyme catalytic activity in response to cell stimulation with serum. Taken together, our results show that the S111P mutation hampers calcium binding and membrane translocation without affecting the catalytic activity, and that the mutation R485H does not affect membrane translocation but blocks catalytic activity that leads to inactivation of the enzyme. Interestingly, our results show that the common K651R polymorphism confers slightly higher activity to the enzyme, suggesting a role of this residue in favoring a catalytically active conformation of cPLA(2)α. Our results define how the mutations negatively influence cPLA(2)α function and explain the inability of the proband to release arachidonic acid for eicosanoid production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051024 | PMC |
http://dx.doi.org/10.1021/bi101877n | DOI Listing |
Food Chem
December 2024
Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China. Electronic address:
Organicphosphorus is a ubiquitous pesticide that has potential hazards to human health and environmental well-being. Therefore, the precise identification of residues of organophosphorus pesticides (OPs) emerges as an urgent necessity. A ratiometric fluorescent sensor for the detection of OPs by leveraging the catalytic activities of Ce and Ce on the two fluorescent substrates 4-Methylumbelliferyl phosphate (4-MUP) and o-phenylenediamine (OPD) correspondingly was designed.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.
Designing catalysts with well-defined active sites with chemical functionality responsive to visible light has significant potential for overcoming scaling relations limiting chemical reactions over heterogeneous catalyst surfaces. Visible light can be leveraged to facilitate the removal of strongly bound species from well-defined single cationic sites (Rh) under mild conditions (323 K) when they are incorporated within a photoactive perovskite oxide (Rh-doped SrTiO). CO, a key intermediate in many chemistries, forms stable geminal dicarbonyl Rh complexes (Rh(CO)), that could act as site blockers or poisons during a catalytic cycle.
View Article and Find Full Text PDFChemSusChem
December 2024
Green Carbon Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.
Pentose oxidation and reduction, processes yielding value-added sugar-derived acids and alcohols, typically involve separate procedures necessitating distinct reaction conditions. In this study, a novel one-pot reaction for the concurrent production of xylonic acid and xylitol from xylose is proposed. This reaction was executed at ambient temperature in the presence of a base, eliminating the need for external gases, by leveraging Pt-supported catalysts.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China.
d-Allulose 3-epimerase (DAEase) derived from has excellent properties in the catalytic production of d-allulose, a rare sugar with unique biological functions. However, the industrial application of DAEase (Cb-DAEase) for d-allulose production is hindered by its low enzyme activity, poor long-term thermostability, and pH tolerance. In this study, we identified potential noncatalytic residues in Cb-DAEase using methods such as proline substitution, surface charge engineering, and surface residue prediction.
View Article and Find Full Text PDFToxins (Basel)
December 2024
All-Russian Research Institute of Phytopathology of RAS, Bolshie Vyazemy, 143050 Moscow, Russia.
An acidic shift in the pH profile of zearalenone hydrolase (ZHD), the most effective and well-studied zearalenone-specific lactone hydrolase, is required to extend the range of applications for the enzyme as a decontamination agent in the feed and food production industries. Amino acid substitutions were engineered in the active center of the enzyme to decrease the pKa values of the catalytic residues E126 and H242. The T216K substitution provided a shift in the pH optimum by one unit to the acidic region, accompanied by a notable expansion in the pH profile under acidic conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!