The present study aimed to evaluate the effects of LLLT (660- and 808-nm wavelengths) on the process of repairing bone defects induced in the femurs of female rats submitted to ovariectomy. Bilateral ovariectomies were performed on 18 female Wistar rats, which were divided into control and irradiated groups after the digital analysis of bone density showed decreased bone mass and after standardized drilling of the femurs. The irradiated groups received 133 J/cm(2) of AsGaAl (660-nm) and InGaAlP (880-nm) laser radiation. The animals were euthanized on days 14 and 21 after the bone defects were established. Detailed descriptive histological evaluations were performed, followed by semi-quantitative histomorphometry. The results from days 14 and 21 showed that the irradiated groups presented increased density of osteoblasts, fibroblasts, and immature osteocytes on the tissue surface compared with the control (non-irradiated) groups (p < 0.05). Additionally, inflammatory infiltrate evaluations showed that LLLT decreased the accumulation of leukocytes when compared to the control treatment (p < 0.05). We concluded that, in our experimental model, both wavelengths (660-nm and 880-nm) inhibited the inflammatory process and induced the proliferation of cells responsible for bone remodeling and repair.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10103-010-0867-9DOI Listing

Publication Analysis

Top Keywords

bone defects
12
irradiated groups
12
defects induced
8
induced femurs
8
femurs female
8
female rats
8
rats submitted
8
submitted ovariectomy
8
bone
5
evaluation osteogenic
4

Similar Publications

Background: Lysinuric protein intolerance is a rare autosomal disorder caused by mutations in the Slc7a7 gene that lead to impaired transport of neutral and basic amino acids. The gold standard treatment for lysinuric protein intolerance involves a low-protein diet and citrulline supplementation. While this approach partially improves cationic amino acid plasma levels and alleviates some symptoms, long-term treatment is suggested to be detrimental and may lead to life-threatening complications characterized by a wide range of hematological and immunological abnormalities.

View Article and Find Full Text PDF

Langerhans cell histiocytosis in children: the value of ultrasound in diagnosis and follow-up.

BMC Med Imaging

January 2025

Department of Ultrasound Medicine, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.

Background: Langerhans cell histiocytosis (LCH) is a rare disease, most prevalent in children. Ultrasound is a noninvasive, cheap, and widely available technique. However, systematic elucidation of sonographic features of LCH and treatment related follow-up are relatively few, resulting in overall underestimation of the clinical value of ultrasound in diagnosing and monitoring LCH.

View Article and Find Full Text PDF

Bone Tissue Engineering: From Biomaterials to Clinical Trials.

Adv Exp Med Biol

January 2025

Department of Stem Cells & Regenerative Medicine, Centre for Interdisciplinary Research, D Y Patil Education Society (Deemed to be University), Kolhapur, India.

Bone tissue engineering is a promising field that aims to rebuild the bone tissue using biomaterials, cells, and signaling molecules. Materials like natural and synthetic polymers, inorganic materials, and composite materials are used to create scaffolds that mimic the hierarchical microstructure of bone. Stem cells, particularly mesenchymal stem cells (MSCs), play a crucial role in bone tissue engineering by promoting tissue regeneration and modulating the immune response.

View Article and Find Full Text PDF

Blood clots (BCs) play a crucial biomechanical role in promoting osteogenesis and regulating mesenchymal stem cell (MSC) function and fate. This study shows that BC formation enhances MSC osteogenesis by activating Itgb1/Fak-mediated focal adhesion and subsequent Runx2-mediated bone regeneration. Notably, BC viscoelasticity regulates this effect by modulating Runx2 nuclear translocation.

View Article and Find Full Text PDF

The use of asfotase alfa, a bone-targeted recombinant alkaline phosphatase (ALP) enzyme, for the treatment of adult-onset hypophosphatasia (HPP) remains controversial, particularly in patients without evident bone abnormalities. We report the case of a 41-year-old woman with a history of Graves' disease, who presented with progressive joint pain and severe fatigue. Despite the absence of bone lesions, the patient was diagnosed with HPP based on persistently low alkaline phosphatase levels, family history, and a novel heterozygous ALPL variant (p.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!