Electromagnetic fields are known to affect the bone metabolism by modifying some relevant physiologic cell parameters of cells, even though the underlying mechanisms are still unclear. The aim of our study was to evaluate the effect of both static magnetic fields (SMFs) of the same intensity of the one generated by spinal metal devices and pulsed electromagnetic fields (PEMFs) of the same intensity used for the management of nonunion on human osteoclasts cell culture. Primary osteoclast cells were isolated from primary human osteoclast precursors and were exposed to SMFs and to PEMFs. Morphology and tartrate-resistant acid phosphatase (TRAP) activity were evaluated in the osteoclast cultures after 7, 10, and 14 days of exposure. The SMF-exposed cells show a more differentiated phenotype and a significantly higher TRAP activity after 7 and 10 days of treatment with respect to a sham control. PEMF-exposed cells have a less-differentiated phenotype after 7 days of exposure compared with the relative sham control, while the TRAP activity shows no statistically significant differences between exposed and control cells at any observation time. Our results indicate that SMFs of the same intensity of the one generated around spinal devices can affect osteoclast differentiation and activity. Aseptic loosening around titanium implants might be due in part to an increased osteoclast activity and differentiation. PEMFs of the same intensity than the one used for the management of nonunions can affect osteoclasts phenotype after 7 days of exposure, while osteoclasts TRAP activity is not affected by this kind of electromagnetic fields.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00296-010-1724-7DOI Listing

Publication Analysis

Top Keywords

electromagnetic fields
16
trap activity
16
days exposure
12
pulsed electromagnetic
8
human osteoclast
8
osteoclast cultures
8
smfs intensity
8
intensity generated
8
generated spinal
8
pemfs intensity
8

Similar Publications

A guidance to intelligent metamaterials and metamaterials intelligence.

Nat Commun

January 2025

ZJU-UIUC Institute, Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou, China.

The bidirectional interactions between metamaterials and artificial intelligence have recently attracted immense interest to motivate scientists to revisit respective communities, giving rise to the proliferation of intelligent metamaterials and metamaterials intelligence. Owning to the strong nonlinear fitting and generalization ability, artificial intelligence is poised to serve as a materials-savvy surrogate electromagnetic simulator and a high-speed computing nucleus that drives numerous self-driving metamaterial applications, such as invisibility cloak, imaging, detection, and wireless communication. In turn, metamaterials create a versatile electromagnetic manipulator for wave-based analogue computing to be complementary with conventional electronic computing.

View Article and Find Full Text PDF

Prospects and applications of efficient physical field processing technologies for polysaccharide extraction and quality improvement in edible mushrooms: A systematic review.

Int J Biol Macromol

January 2025

Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China. Electronic address:

Edible mushroom-derived polysaccharides (EMPs) have been widely used in foods, medicine, and cosmetics due to theirs' diverse and versatile biological activities. Currently, many conventional extraction methods for extracting EMPs are struggling to meet the growing demand, and the produced EMPs with poor quality and low bioactivity. Novel physical field (e.

View Article and Find Full Text PDF

Absorption-Emission Codes for Atomic and Molecular Quantum Information Platforms.

Phys Rev Lett

December 2024

University of Maryland, NIST, Joint Center for Quantum Information and Computer Science, /, College Park, Maryland 20742, USA.

Diatomic molecular codes [V. V. Albert, J.

View Article and Find Full Text PDF

In cardiovascular research, electromagnetic fields generated by Riga plates are utilized to study or manipulate blood flow dynamics, which is particularly crucial in developing treatments for conditions such as arterial plaque deposition and understanding blood behavior under varied flow conditions. This research predicts the flow patterns of blood enhanced with gold and maghemite nanoparticles (gold-maghemite/blood) in an electromagnetic microchannel influenced by Riga plates with a temperature gradient that decays exponentially, under sudden changes in pressure gradient. The flow modeling includes key physical influences like radiation heat emission and Darcy drag forces in porous media, with the flow mathematically represented through unsteady partial differential equations solved using the Laplace transform (LT) method.

View Article and Find Full Text PDF

Nanomaterials and clinical SERS technology: broad applications in disease diagnosis.

J Mater Chem B

January 2025

Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.

The critical need for rapid cancer diagnosis and related illnesses is growing alongside the current healthcare challenges, unfavorable prognosis, and constraints in diagnostic timing. As a result, emphasis on surface-enhanced Raman spectroscopy (SERS) diagnostic methods, including both label-free and labelled approaches, holds significant promise in fields such as analytical chemistry, biomedical science, and physics, due to the user-friendly nature of SERS. Over time, the SERS detection sensitivity and specificity with nanostructured materials for SERS applications (NMs-SERS) in different media have been remarkable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!