The current drug treatment for Alzheimer's disease (AD) is only partially and temporary effective. Transcranial magnetic stimulation (TMS) is a non-invasive technique that generates an electric current inducing modulation in cortical excitability. In addition, cognitive training (COG) may improve cognitive functions in AD. Our aim was to treat AD patients combining high-frequency repetitive TMS interlaced with COG (rTMS-COG). Eight patients with probable AD, treated for more than 2 months with cholinesterase inhibitors, were subjected to daily rTMS-COG sessions (5/week) for 6 weeks, followed by maintenance sessions (2/week) for an additional 3 months. Six brain regions, located individually by MRI, were stimulated. COG tasks were developed to fit these regions. Primary objectives were average improvement of Alzheimer Disease Assessment Scale-Cognitive (ADAS-cog) and Clinical Global Impression of Change (CGIC) (after 6 weeks and 4.5 months, compared to baseline). Secondary objectives were average improvement of MMSE, ADAS-ADL, Hamilton Depression Scale (HAMILTON) and Neuropsychiatric Inventory (NPI). One patient abandoned the study after 2 months (severe urinary sepsis). ADAS-cog (average) improved by approximately 4 points after both 6 weeks and 4.5 months of treatment (P < 0.01 and P < 0.05) and CGIC by 1.0 and 1.6 points, respectively. MMSE, ADAS-ADL and HAMILTON improved, but without statistical significance. NPI did not change. No side effects were recorded. In this study, rTMS-COG (provided by Neuronix Ltd., Yokneam, Israel) seems a promising effective and safe modality for AD treatment, possibly as good as cholinesterase inhibitors. A European double blind study is underway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00702-010-0578-1 | DOI Listing |
Neurol Sci
January 2025
Department of Neurology, Baotou Central Hospital, Baotou, Inner Mongolia, China.
Objectives: Ataxia is a common symptom in patients with Cerebellar subtype of Multiple system atrophy (MSA-C), but effective treatments remain elusive. The present study aims to investigate whether repetitive transcranial magnetic stimulation (rTMS) over the bilateral cerebellum could relieve ataxia in patients with MSA-C.
Patients And Methods: This is a single-center, randomized and double-blind trial.
J Neurophysiol
February 2025
Breathing Research and Therapeutics Center, Department of Physical Therapy, University of Florida, Gainesville, Florida, United States.
We present a case report of a 42-year-old female with post-West Nile virus meningoencephalitis who exhibited unique, long-latency diaphragm potentials evoked by transcranial and cervical magnetic stimulation after exposure to acute intermittent hypoxia (AIH). The subject was recruited for a study investigating AIH effects on respiratory motor function in healthy individuals. She had contracted West Nile virus infection 5 years before assessment that resulted in hospitalization and persistent allodynia but was not reported to the research team.
View Article and Find Full Text PDFCells
January 2025
Beijing Institute of Radiation Medicine, Beijing 100850, China.
Neuromodulation stands as a cutting-edge approach in the fields of neuroscience and therapeutic intervention typically involving the regulation of neural activity through physical and chemical stimuli. The purpose of this review is to provide an overview and evaluation of different neuromodulation techniques, anticipating a clearer understanding of the future developmental trajectories and the challenges faced within the domain of neuromodulation that can be achieved. This review categorizes neuromodulation techniques into genetic neuromodulation methods (including optogenetics, chemogenetics, sonogenetics, and magnetogenetics) and non-genetic neuromodulation methods (including deep brain stimulation, transcranial magnetic stimulation, transcranial direct current stimulation, transcranial ultrasound stimulation, photobiomodulation therapy, infrared neuromodulation, electromagnetic stimulation, sensory stimulation therapy, and multi-physical-factor stimulation techniques).
View Article and Find Full Text PDFBrain Sci
January 2025
Waisman Center, University of Wisconsin-Madison, Madison, WI 53706, USA.
Background: Perinatal brain injury is a leading cause of developmental disabilities, including cerebral palsy. However, further work is needed to understand early brain development in the presence of brain injury. In this case report, we examine the longitudinal neuromotor development of a term infant following a significant loss of right-hemispheric brain tissue due to a unilateral ischemic stroke.
View Article and Find Full Text PDFBrain Sci
December 2024
Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Via Casorati, 37131 Verona, Italy.
Parkinson's Disease (PD) is a progressive neurodegenerative disorder characterized by a range of motor and non-motor symptoms (NMSs) that significantly impact patients' quality of life. This review aims to synthesize the current literature on the application of brain stimulation techniques, including non-invasive methods such as transcranial magnetic stimulation (TMS), transcranial electrical stimulation (tES), transcranial focused ultrasound stimulation (tFUS), and transcutaneous vagus nerve stimulation (tVNS), as well as invasive approaches like deep brain stimulation (DBS). We explore the efficacy and safety profiles of these techniques in alleviating both motor impairments, such as bradykinesia and rigidity, and non-motor symptoms, including cognitive decline, depression, and impulse control disorders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!