Rho family G proteins including Rac regulate a variety of cellular functions, such as morphology, motility, and gene expression. Here we developed a fluorescence resonance energy transfer-based analysis in which we could monitor the activity of Rac1. To detect fluorescence resonance energy transfer, yellow fluorescent protein fused Rac1 and cyan fluorescent protein fused Cdc42-Rac1-interaction-binding domain of Pak1 protein were used as intermolecular probes of FRET. The fluorophores were separated with linear unmixing method. The fluorescence resonance energy transfer efficiency was measured by acceptor photobleaching assisted assay. With these methods, the Rac1 activity was visualized in a cell. The present findings indicate that this approach is sensitive enough to achieve results similar to those from ratiometric fluorescence resonance energy transfer analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3015054 | PMC |
http://dx.doi.org/10.1267/ahc.10025 | DOI Listing |
Mikrochim Acta
December 2024
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China.
A dual-signal aptamer-based assay utilizing colorimetric and fluorescence techniques was developed for the determination of zearalenone (ZEN). The CdTe quantum dots, serving as the fluorescent signal source, were surface-modified onto FeO@SiO and subsequently functionalized with the aptamer. The COF-Au was modified with complementary chain, which possessed peroxide (POD)-like enzyme properties, and could catalyze the peroxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to ox TMB, resulting in the generation of colorimetric signals.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China.
Circularly polarized multiple-resonance thermally activated delayed fluorescence (CP-MR-TADF) materials have received widespread attention in recent years, but it remains a formidable challenge to design high-performance CP-MR-TADF emitters concurrently exhibiting high quantum efficiency, narrowband emission, and high dissymmetry factor (). Here, we perform an in-depth theoretical investigation on the CP-MR-TADF materials based on [2.2] paracyclophane (pCp) derivatives.
View Article and Find Full Text PDFJ Cardiovasc Dev Dis
December 2024
Department of Medicine, University of California, 650 Charles E Young Dr. S, Center for Health Sciences, Room A2-237, Los Angeles, CA 90095, USA.
The detection and assessment of atherosclerosis and cardiovascular calcification can inform risk stratification and therapies to reduce cardiovascular morbidity and mortality. In this review, we provide an overview of current and emerging imaging techniques for assessing atherosclerosis and cardiovascular calcification in animal models. Traditional imaging modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI), offer non-invasive approaches of visualizing atherosclerotic calcification in vivo; integration of these techniques with positron emission tomography (PET) imaging adds molecular imaging capabilities, such as detection of metabolically active microcalcifications with F-sodium fluoride.
View Article and Find Full Text PDFJ Funct Biomater
December 2024
Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
Reactive oxygen species (ROS) are generated predominantly during cellular respiration and play a significant role in signaling within the cell and between cells. However, excessive accumulation of ROS can lead to cellular dysfunction, disease progression, and apoptosis that can lead to organ dysfunction. To overcome the short half-life of ROS and the relatively small amount produced, various imaging methods have been developed, using both endogenous and exogenous means to monitor ROS in disease settings.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal.
Accurate and selective monitoring of thiamine levels in multivitamin supplements is essential for preventing deficiencies and ensuring product quality. To achieve this, a Förster resonance energy transfer (FRET) system using carbon dots (CDs) as energy donors and citrate-stabilized silver nanoparticles (AgNPs) as energy acceptors was developed. The aqueous synthesis of AgNPs using microwave irradiation was optimized to obtain efficient plasmonic nanoparticles for FRET applications, targeting maximal absorbance intensity, stability, and wavelength alignment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!