Dengue virus (DV) infection is one of the most common mosquito-borne viral diseases in the world. The innate immune system is important for the early detection of virus and for mounting a cascade of defense measures which include the production of type 1 interferon (IFN). Hence, a thorough understanding of the innate immune response during DV infection would be essential for our understanding of the DV pathogenesis. A recent application of the microarray to dengue virus type 1 (DV1) infected lung carcinoma cells revealed the increased expression of both extracellular and cytoplasmic pattern recognition receptors; retinoic acid inducible gene-I (RIG-I), melanoma differentiation associated gene-5 (MDA-5) and Toll-like receptor-3 (TLR3). These intracellular RNA sensors were previously reported to sense DV infection in different cells. In this study, we show that they are collectively involved in initiating an effective IFN production against DV. Cells silenced for these genes were highly susceptible to DV infection. RIG-I and MDA5 knockdown HUH-7 cells and TLR3 knockout macrophages were highly susceptible to DV infection. When cells were silenced for only RIG-I and MDA5 (but not TLR3), substantial production of IFN-β was observed upon virus infection and vice versa. High susceptibility to virus infection led to ER-stress induced apoptosis in HUH-7 cells. Collectively, our studies demonstrate that the intracellular RNA virus sensors (RIG-I, MDA5 and TLR3) are activated upon DV infection and are essential for host defense against the virus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3014945PMC
http://dx.doi.org/10.1371/journal.pntd.0000926DOI Listing

Publication Analysis

Top Keywords

rig-i mda5
16
virus infection
16
mda5 tlr3
12
dengue virus
12
infection
9
virus
8
innate immune
8
infection essential
8
intracellular rna
8
infection cells
8

Similar Publications

Dengue Virus Replicative-Form dsRNA Is Recognized by Both RIG-I and MDA5 to Activate Innate Immunity.

J Med Virol

February 2025

CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.

RIG-I like receptors (RLRs) are a family of cytosolic RNA sensors that sense RNA virus infection to activate innate immune response. It is generally believed that different RNA viruses are recognized by either RIG-I or MDA5, two important RLR members, depending on the nature of pathogen-associated molecular patterns (PAMPs) that are generated by RNA virus replication. Dengue virus (DENV) is an important RNA virus causing serious human diseases.

View Article and Find Full Text PDF

Current cancer treatments, including chemotherapy, surgery, and radiation, often present significant challenges such as severe side effects, drug resistance, and damage to healthy tissues. To address these issues, we introduce a virus-inspired RNA mimicry approach, specifically through the development of uridine-rich nanoparticles (UNPs) synthesized using the rolling circle transcription (RCT) technique. These UNPs are designed to mimic the poly-U tail sequences of viral RNA, effectively engaging RIG-I-like receptors (RLRs) such as MDA5 and LGP2 in cancer cells.

View Article and Find Full Text PDF

scTRIM44 Positively Regulated Siniperca Chuatsi Rhabdovirus Through RIG-I- and MDA5-Mediated Interferon Signaling.

Viruses

December 2024

Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Key Laboratory of Fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.

Tripartite Motif-Containing 44 (TRIM44) is responsible for cancers, neurodegenerative diseases, and viral infections. However, the role of TRIM44 (scTRIM44) during viral infection remains unclear. In the present study, we analyzed the molecular characteristics of scTRIM44 and its role in infectious spleen and kidney necrosis virus (ISKNV), largemouth bass virus (LMBV), and Siniperca chuatsi rhabdovirus (SCRV) infection.

View Article and Find Full Text PDF

Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are severe mucocutaneous disorders characterized by extensive tissue necrosis; they are often accompanied by severe ocular complications (SOC). The regulatory role of microRNAs (miRNAs) in modulating immune responses in SJS/TEN is not fully understood, particularly in relation to chronic SOC. We explored the expression profiles of specific miRNAs and their potential impact on the regulation of key innate immune genes in patients with SJS/TEN with SOC.

View Article and Find Full Text PDF

Signaling pathways of duck RIG-I in gene-edited DF1 chicken cells.

Poult Sci

December 2024

Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, South Korea; Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, South Korea. Electronic address:

Retinoic acid inducible gene I (RIG-I) is an innate immune RNA sensor which can detect viral infection such as influenza viruses. Duck but not chicken has an RIG-I gene. However, the immune responses could be induced in chicken cells by transferring the duck RIG-I transgene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!