Background: Celecoxib, a cyclooxygenase-2 inhibitor, is a commonly ingested drug that is used by some women during pregnancy. Although use of celecoxib is associated with increased cardiovascular risk in adults, its effect on fetal heart development remains unknown.
Methods: Zebrafish embryos were exposed to celecoxib or other relevant drugs from tailbud stage (10.3-72 h postfertilization). Heart looping and valve formation were examined at different developmental stages by in vivo confocal imaging. In addition, whole mount in situ hybridization was performed to examine drug-induced changes in the expression of heart valve marker genes.
Results: In celecoxib-treated zebrafish embryos, the heart failed to undergo normal looping and the heart valve was absent, causing serious blood regurgitation. Furthermore, celecoxib treatment disturbed the restricted expression of the heart valve markers bone morphogenetic protein 4 and versican-but not the cardiac chamber markers cardiac myosin light chain 2, ventricular myosin heavy chain, and atrial myosin heavy chain. These defects in heart development were markedly relieved by treatment with the cyclooxygenase-2 downstream product prostaglandin E2, and mimicked by the cyclooxygenase-2 inhibitor NS398, implying that celecoxib-induced heart defects were caused by the inhibition of cyclooxygenase-2 activity.
Conclusions: These findings provide the first in vivo evidence that celecoxib exposure impairs heart development in zebrafish embryos by inhibiting cyclooxygenase-2 activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/ALN.0b013e3182039f22 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!