Planar cell polarity: fashioning solutions.

Fly (Austin)

Department of Zoology, University of Cambridge, Cambridge, UK.

Published: September 2011

Scientists like to consider themselves as especially objective, but, however hard we try we cannot be very different from everyone else. Like them we helplessly absorb our knowledge, our perspectives, our valuation of whether something is exciting or boring from those around us. In this "extra view" I reflect on fashion, illustrating by a small discovery of ours, and discussing why it was not made before.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3127061PMC
http://dx.doi.org/10.4161/fly.5.2.14396DOI Listing

Publication Analysis

Top Keywords

planar cell
4
cell polarity
4
polarity fashioning
4
fashioning solutions
4
solutions scientists
4
scientists consider
4
consider objective
4
objective hard
4
hard helplessly
4
helplessly absorb
4

Similar Publications

Cochlear Organ Dissection, Immunostaining, and Confocal Imaging in Mice.

Bio Protoc

January 2025

ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.

The organ of Corti, located in the inner ear, is the primary organ responsible for animal hearing. Each hair cell has a V-shaped or U-shaped hair bundle composed of actin-filled stereocilia and a kinocilium supported by true transport microtubules. Damage to these structures due to noise exposure, drug toxicity, aging, or environmental factors can lead to hearing loss and other disorders.

View Article and Find Full Text PDF

Introduction: The Wnt/planar cell polarity (PCP) signaling pathway is pivotal in regulating various biological processes such as early embryonic development, neural crest cell migration, and cancer invasion. Despite advances in understanding the role of Wnt/PCP pathway dysregulation in tumorigenesis, numerous unanswered questions remain. Our study focused on VANGL2, a core PCP gene, to elucidate its potential mechanistic involvement in cancer development.

View Article and Find Full Text PDF

There has been limited exploration of carbon nanofiber as a scaffold for cellular attachment and proliferation. In this work, commercially available, pyrolytically stripped carbon nanofiber (cCNF) is deposited over electrospun nanofiber mats, polycaprolactone (PCL) and poly(D-lactide) (PDLA), to immobilize them and investigate whether the 3D cCNF layer's surface augments cell proliferation of human dermal fibroblasts (nHDF). Spectral characterizations, such as XRD and Raman, show that cCNF exhibited crystalline structure with a high graphitization degree.

View Article and Find Full Text PDF

An efficient heuristic for geometric analysis of cell deformations.

Comput Biol Med

January 2025

SCOPIA Research Group, University of the Balearic Islands, Dpt. of Mathematics and Computer Science, Crta. Valldemossa, Km 7.5, Palma, E-07122, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, E-07122, Spain; Laboratory for Artificial Intelligence Applications at UIB (LAIA@UIB), Palma, E-07122, Spain; Artificial Intelligence Research Institute of the Balearic Islands (IAIB), Palma, E-07122, Spain. Electronic address:

Sickle cell disease causes erythrocytes to become sickle-shaped, affecting their movement in the bloodstream and reducing oxygen delivery. It has a high global prevalence and places a significant burden on healthcare systems, especially in resource-limited regions. Automated classification of sickle cells in blood images is crucial, allowing the specialist to reduce the effort required and avoid errors when quantifying the deformed cells and assessing the severity of a crisis.

View Article and Find Full Text PDF

High-throughput measurement of cellular traction forces at the nanoscale remains a significant challenge in mechanobiology, limiting our understanding of how cells interact with their microenvironment. Here, we present a novel technique for fabricating protein nanopatterns in standard multiwell microplate formats (96/384-wells), enabling the high-throughput quantification of cellular forces using DNA tension gauge tethers (TGTs) amplified by CRISPR-Cas12a. Our method employs sparse colloidal lithography to create nanopatterned surfaces with feature sizes ranging from sub 100 to 800 nm on transparent, planar, and fully PEGylated substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!