Background And Objectives: Bifidobacteria colonize the gut after the first week of life and remain an important component of the gut microbiota in infancy. This study was carried out to characterize the diversity and number of bifidobacteria colonizing the gut in Indian neonates and to investigate whether asymptomatic infection with rotavirus in the first month of life affected gut colonization by bifidobacteria.

Methods: DNA was isolated from faeces of 14 term-born neonates who were under surveillance for rotavirus infection. Bacterial and bifidobacterial diversity was evaluated by temporal temperature gradient electrophoresis (TTGE) of 16S rDNA amplified using total bacteria and bifidobacteria-specific primers. Real time PCR, targeting 16S rDNA, was used to quantitate faecal bifidobacteria and enterobacteria.

Results: TTGE of conserved bacterial 16S rDNA showed 3 dominant bands of which Escherichia coli (family Enterobacteriaceae) and Bifidobacterium (family Bifidobacteriaceae) were constant. TTGE of Bifidobacterium genus-specific DNA showed a single band in all neonates identified by sequencing as Bifidobacterium longum subsp. infantis. Faecal bifidobacterial counts (log 10 cfu/g faeces) ranged from 6.1 to 9.3 and enterobacterial counts from 6.3 to 9.5. Neonates without and with rotavirus infection in the first week of life did not show significant differences in the median count of bifidobacteria (log 10 count 7.48 vs. 7.41) or enterobacteria (log 10 count 8.79 vs. 7.92).

Interpretation And Conclusions: B. longum subsp. infantis was the sole bifidobacterial species colonizing the gut of Indian neonates. Asymptomatic rotavirus infection in the first month of life was not associated with alteration in faecal bifidobacteria or enterobacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3102461PMC

Publication Analysis

Top Keywords

rotavirus infection
16
faecal bifidobacteria
12
indian neonates
12
month life
12
16s rdna
12
neonates asymptomatic
8
asymptomatic rotavirus
8
infection month
8
week life
8
colonizing gut
8

Similar Publications

Rotavirus A (RVA) is the primary enteric pathogen of humans and many other species. However, RVA interspecies transmission remains poorly understood. In this study, we conducted a comprehensive screening and genotyping analysis of RVA in 1706 wild animal samples collected from various regions within Yunnan Province, China.

View Article and Find Full Text PDF

Genome Characterization of Mammalian Orthoreovirus and Porcine Epidemic Diarrhea Virus Isolated from the Same Fattening Pig.

Animals (Basel)

January 2025

Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.

In 2020, severe diarrhea occurred in four-month-old fattening pigs from nine farms in Shandong Province, China. Fecal samples were collected from diseased pigs and tested by PCR for the presence of mammalian orthoreovirus (MRV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), porcine rotavirus A (PoRVA), transmissible gastroenteritis virus (TGEV), porcine kobuvirus (PKV), and pseudorabies virus (PRV). The viral RNA of MRV and PEDV was detected in the fecal samples.

View Article and Find Full Text PDF

Prevalence and genetic characterization of viral gastroenteritis in hospitalized children aged <5 years in Yunnan Province, China, 2020-2022.

Front Pediatr

January 2025

Yunnan Provincial Key Laboratory of Public Health and Biosafety & Institute for AIDS/STD Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming, Yunnan, China.

Background: Rotavirus (RV), norovirus (NoV), human enteric adenovirus (HAdV), human astrovirus (HAstV), and sapovirus (SaV) are important viral causes of acute gastroenteritis (AGE) in children. However, limited information is available regarding AGE in Yunnan, Southwest China.

Methods: To investigate the prevalence of group A rotavirus (RVA), norovirus genogroups I (GI) and II (GII), and HAdV, HAstV, and SaV in children aged <5 years hospitalized with AGE between 2020 and 2022.

View Article and Find Full Text PDF

A single residue switch mediates the broad neutralization of Rotaviruses.

Nat Commun

January 2025

State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China.

Broadly neutralizing antibodies (bNAbs) could offer escape-tolerant and lasting protection against viral infections and therefore guide development of broad-spectrum vaccines. The increasing challenge posed by viral evolution and immune evasion intensifies the importance of the discovery of bNAbs and their underlying neutralization mechanism. Here, focusing on the pivotal viral protein VP4 of rotavirus (RV), we identify a potent bNAb, 7H13, exhibiting broad-spectrum neutralization across diverse RV genotypes and demonstrating strong prevention of virus infection in female mice.

View Article and Find Full Text PDF

Bacterial flagellin, a potent intestinal innate immune activator, prevents murine rotavirus (RV) infection independent of adaptive immunity and interferons. The flagellin-induced immunity is mediated by Toll-like receptor (TLR5) and Nod-like receptor C4 (NLRC4), which elicit the production of interleukins 22 (IL-22) and IL-18, respectively. Here, we assessed whether a high abundance of flagellin at the time of vaccination would negatively affect the oral RV vaccine take.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!