In enteropathogenic Yersinia, the expression of several early-phase virulence factors such as invasin is tightly regulated in response to environmental cues. The responsible regulatory network is complex, involving several regulatory RNAs and proteins such as the LysR-type transcription regulator (LTTR) RovM. In this study, the crystal structure of the effector-binding domain (EBD) of RovM, the first LTTR protein described as being involved in virulence regulation, was determined at a resolution of 2.4 Å. Size-exclusion chromatography and comparison with structures of full-length LTTRs show that RovM is most likely to adopt a tetrameric arrangement with two distant DNA-binding domains (DBDs), causing the DNA to bend around it. Additionally, a cavity was detected in RovM which could bind small inducer molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S0907444910049681DOI Listing

Publication Analysis

Top Keywords

structure effector-binding
8
effector-binding domain
8
lysr-type transcription
8
rovm
5
domain lysr-type
4
transcription factor
4
factor rovm
4
rovm yersinia
4
yersinia pseudotuberculosis
4
pseudotuberculosis enteropathogenic
4

Similar Publications

Rice blast, caused by Magnaporthe oryzae, severely impacts global rice production. Understanding the role of the host's blast negative regulatory genes is crucial for combating this disease. We studied the expression of seven rice blast negative regulatory genes (previously characterized in ssp.

View Article and Find Full Text PDF

A bacterial transcription activator dedicated to the expression of the enzyme catalyzing the first committed step in fatty acid biosynthesis.

Nucleic Acids Res

November 2024

Institute of Microbiology, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.

Acetyl-CoA carboxylase (ACCase) catalyzes the first committed and rate-limiting step of de novo fatty acid synthesis (FAS). Although this step is tightly regulated, regulators that specifically control transcription of the ACCase genes remain elusive. In this study, we identified LysR-type transcriptional regulator AccR as a dedicated activator for the transcription of accS, a gene encoding a multiple-domain ACCase in Shewanella oneidensis.

View Article and Find Full Text PDF

The SorC family is a large group of bacterial transcription regulators involved in controlling carbohydrate catabolism and quorum sensing. SorC proteins consist of a conserved C-terminal effector-binding domain and an N-terminal DNA-binding domain, whose type divides the family into two subfamilies: SorC/DeoR and SorC/CggR. Proteins of the SorC/CggR subfamily are known to regulate the key node of glycolysis-triose phosphate interconversion.

View Article and Find Full Text PDF

RHOA mutations are found at diverse residues in various cancer types, implying mutation- and cell-specific mechanisms of tumorigenesis. Here, we focus on the underlying mechanisms of two gain-of-function RHOA mutations, A161P and A161V, identified in adult T-cell leukemia/lymphoma. We find that RHOA and RHOA are both fast-cycling mutants with increased guanine nucleotide dissociation/association rates compared with RHOA and show reduced GTP-hydrolysis activity.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used nanodisc technology and paramagnetic relaxation enhancement to study the structure of a complex involving KRAS and the RAF proteins, discovering that these interactions significantly change how KRAS molecules pair up.
  • * The study reveals that binding RAF alters KRAS dimer arrangements, providing insights into RAF activation and suggesting a potential pathway for targeting these interactions in cancer treatment.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!