AI Article Synopsis

  • Severe liver damage from halothane (HAL) occurs in a small percentage of patients, with female sex identified as a risk factor; the mechanism behind this is unclear.
  • In a study with female BALB/cJ mice, HAL treatment led to significant liver injury that varied with the estrous cycle, while ovariectomized (OVX) mice experienced only mild injury.
  • Elevated levels of interferon-gamma (IFN-γ) and activated natural killer (NK) cells were linked to severe liver injury, indicating that these immune responses are critical factors in the heightened sensitivity of females to HAL-induced hepatotoxicity.

Article Abstract

Severe halothane (HAL)-induced hepatotoxicity occurs in one in 6000-30,000 patients by an unknown mechanism. Female sex is a risk factor in humans and rodents. We tested the hypothesis that a sex difference in natural killer (NK) cell activity contributes to HAL-induced liver injury. HAL (15 mmol/kg, ip) treatment resulted in severe liver injury by 12 h in female, wild-type BALB/cJ mice, and the magnitude of liver injury varied with stage of the estrous cycle. Ovariectomized (OVX) mice developed only mild liver injury. Plasma interferon-gamma (IFN-γ) was elevated 10-fold in HAL-treated females compared with similarly treated male mice or with OVX female mice. IFN-γ knockout mice were resistant to severe HAL-induced liver injury. The deactivation of NK cells with anti-asialo GM1 treatment attenuated liver injury and the increase in plasma IFN-γ compared with immunoglobulin G-treated control mice. Mice with a mutated form of perforin, a protein involved in granule-mediated cytotoxicity, were protected from severe liver injury. Furthermore, HAL increased the activity of NK cells in vivo, as indicated by increased surface expression of CD69, an early activation marker. In response to HAL, NK cell receptor ligands on the surface of hepatocytes were expressed in a manner that can activate NK cells. These results confirm the sexual dimorphic hepatotoxic response to HAL in mice and suggest that IFN-γ and NK cells have essential roles in the development of severe HAL-induced hepatotoxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3061480PMC
http://dx.doi.org/10.1093/toxsci/kfr005DOI Listing

Publication Analysis

Top Keywords

liver injury
32
severe liver
12
natural killer
8
liver
8
injury
8
hal-induced hepatotoxicity
8
hal-induced liver
8
injury hal
8
mice
8
mice ifn-γ
8

Similar Publications

The scarcity of donors has prompted the growing utilization of steatotic livers, which are susceptible to injuries following orthotopic liver transplantation (OLT). This study aims to assess the efficacy of multidrug donor preconditioning (MDDP) in alleviating injuries of steatotic grafts following rat OLT. Lean rats were subjected to a Western-style diet with high-fat (HF) and high-fructose (HFr) for 30 days to induce steatosis.

View Article and Find Full Text PDF

Drug-induced liver injury (DILI) is a rare but significant cause of acute liver failure, often challenging to diagnose due to its clinical similarity to other liver conditions. Since most drugs are metabolized by liver enzymes, the liver is at risk for hepatotoxicity. Although DILI has a low incidence in clinical practice, it remains a critical consideration for patients on potentially hepatotoxic medications.

View Article and Find Full Text PDF

Background: Drug-induced organ toxicity is a significant health concern, with gentamicin known for its effective antibacterial properties but also severe side effects, particularly cytotoxicity in liver and kidney tissues. This current study observed the preventive role of baicalein and bergenin against hepatic and renal injuries caused by gentamicin in rats.

Methods: Thirty-two male Sprague Dawley rats were divided into four groups, namely, control, gentamicin (gentamicin 80 mg/kg/day), baicalein (gentamicin 80 mg/kg/day + baicalein 100 mg/kg/day) and bergenin (gentamicin 80 mg/kg/day + bergenin 100 mg/kg/day).

View Article and Find Full Text PDF

Obeticholic Acid Aggravates Liver Fibrosis by Activating Hepatic Farnesoid X Receptor-induced Apoptosis in Cholestatic Mice.

Chem Biol Interact

December 2024

New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China. Electronic address:

Obeticholic acid (OCA) was approved for the treatment of primary biliary cholangitis (PBC) patients. However, it can cause severe drug-induced liver injury (DILI), which may put PBC patients at risk of acute-on-chronic liver failure (ACLF) and even death. Farnesoid X receptor (FXR) is considered as the target of OCA for cholestasis, but there is still a lack of research on whether hepatic and ileal FXR have different effects after OCA treatment.

View Article and Find Full Text PDF

Non-alcoholic steatohepatitis (NASH) is the most common cause of chronic liver diseases with its pathophysiological mechanism poorly understood. In this work, serological, histological, molecular biological, biochemical, and immunological methods were applied to explore the pathological significance and action of zinc finger protein 281 (ZFP281 in mouse, ZNF281 in human) and targeted strategies. We reported that ZFP281/ZNF281 abundance in hepatocytes was positively correlated with the progression of NASH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!