Chaperone Hsp27 modulates AUF1 proteolysis and AU-rich element-mediated mRNA degradation.

Mol Cell Biol

Department of Molecular Genetics, Microbiology and Immunology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane West, Piscataway, NJ 08854, USA.

Published: April 2011

AUF1 is an AU-rich element (ARE)-binding protein that recruits translation initiation factors, molecular chaperones, and mRNA degradation enzymes to the ARE for mRNA destruction. We recently found chaperone Hsp27 to be an AUF1-associated ARE-binding protein required for tumor necrosis factor alpha (TNF-α) mRNA degradation in monocytes. Hsp27 is a multifunctional protein that participates in ubiquitination of proteins for their degradation by proteasomes. A variety of extracellular stimuli promote Hsp27 phosphorylation on three serine residues--Ser(15), Ser(78), and Ser(82)-by a number of kinases, including the mitogen-activated protein (MAP) pathway kinases p38 and MK2. Activating either kinase stabilizes ARE mRNAs. Likewise, ectopic expression of phosphomimetic mutant forms of Hsp27 stabilizes reporter ARE mRNAs. Here, we continued to examine the contributions of Hsp27 to mRNA degradation. As AUF1 is ubiquitinated and degraded by proteasomes, we addressed the hypothesis that Hsp27 phosphorylation controls AUF1 levels to modulate ARE mRNA degradation. Indeed, selected phosphomimetic mutants of Hsp27 promote proteolysis of AUF1 in a proteasome-dependent fashion and render ARE mRNAs more stable. Our results suggest that the p38 MAP kinase (MAPK)-MK2-Hsp27 signaling axis may target AUF1 destruction by proteasomes, thereby promoting ARE mRNA stabilization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135302PMC
http://dx.doi.org/10.1128/MCB.00907-10DOI Listing

Publication Analysis

Top Keywords

mrna degradation
20
chaperone hsp27
8
degradation auf1
8
are-binding protein
8
hsp27 phosphorylation
8
mrna
7
hsp27
7
auf1
6
degradation
6
hsp27 modulates
4

Similar Publications

Activators of the 26S proteasome when protein degradation increases.

Exp Mol Med

January 2025

Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA.

In response to extra- and intracellular stimuli that constantly challenge and disturb the proteome, cells rapidly change their proteolytic capacity to maintain proteostasis. Failure of such efforts often becomes a major cause of diseases or is associated with exacerbation. Increase in protein breakdown occurs at multiple steps in the ubiquitin-proteasome system, and the regulation of ubiquitination has been extensively studied.

View Article and Find Full Text PDF

Following transcript release during intrinsic termination, Escherichia coli RNA polymerase (RNAP) often remains associated with DNA in a post-termination complex (PTC). RNAPs in PTCs are removed from the DNA by the SWI2/SNF2 adenosine triphosphatase (ATPase) RapA. Here we determined PTC structures on negatively supercoiled DNA and with RapA engaged to dislodge the PTC.

View Article and Find Full Text PDF

RNA binding protein ALYREF regulates ferroptosis to facilitate LUAD growth and metastasis via promoting SLC7A11 mRNA stability.

Sci Rep

January 2025

Department of Lung transplantation and Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, China.

Ferroptosis is of great significance in carcinogenesis as it interconnects with a multiplicity of biological processes. Meanwhile, its function and regulatory role in lung cancer remains ambiguous. In this study, we discovered by WB and IHC that ALYREF has a higher expression in lung adenocarcinoma (LUAD) tissues compared with normal ones.

View Article and Find Full Text PDF

Ghrelin enhances feeding by activating the growth hormone secretagogue receptor (GHSR). In the brain, GHSRs are expressed in regions responsible for regulating food motivation including the ventral tegmental area (VTA). Endogenous cannabinoids also promote food seeking behaviors through the cannabinoid receptor 1 type (CB-1Rs) in brain regions including the VTA.

View Article and Find Full Text PDF

N6-methyladenosine (mA), a well-known post-transcriptional modification, is implicated in diverse cellular and physiological processes. However, much remains unknown regarding the precise role and mechanism of mA modification on muscle development. In this study, we make observation that the levels of mA and METTL3 are markedly elevated during the differentiation phase (DM) compared to the growth phase (GM) in both C2C12 and bovine myoblasts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!