Outcrossing, mitotic recombination, and life-history trade-offs shape genome evolution in Saccharomyces cerevisiae.

Proc Natl Acad Sci U S A

Department of Biology and Institute for Genome Sciences and Policy Center for Systems Biology, Duke University, Durham, NC 27708, USA.

Published: February 2011

We carried out a population genomic survey of Saccharomyces cerevisiae diploid isolates and find that many budding yeast strains have high levels of genomic heterozygosity, much of which is likely due to outcrossing. We demonstrate that variation in heterozygosity among strains is correlated with a life-history trade-off that involves how readily yeast switch from asexual to sexual reproduction under nutrient stress. This trade-off is reflected in a negative relationship between sporulation efficiency and pseudohyphal development and correlates with variation in the expression of RME1, a transcription factor with pleiotropic effects on meiosis and filamentous growth. Selection for alternate life-history strategies in natural versus human-associated environments likely contributes to differential maintenance of genomic heterozygosity through its effect on the frequency that yeast lineages experience sexual cycles and hence the opportunity for inbreeding. In addition to elevated levels of heterozygosity, many strains exhibit large genomic regions of loss-of-heterozygosity (LOH), suggesting that mitotic recombination has a significant impact on genetic variation in this species. This study provides new insights into the roles that both outcrossing and mitotic recombination play in shaping the genome architecture of Saccharomyces cerevisiae. This study also provides a unique case where stark differences in the genomic distribution of genetic variation among individuals of the same species can be largely explained by a life-history trade-off.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3033294PMC
http://dx.doi.org/10.1073/pnas.1012544108DOI Listing

Publication Analysis

Top Keywords

mitotic recombination
12
saccharomyces cerevisiae
12
outcrossing mitotic
8
genomic heterozygosity
8
heterozygosity strains
8
life-history trade-off
8
genetic variation
8
genomic
5
life-history
4
recombination life-history
4

Similar Publications

Background: Peritumoral lidocaine infiltration prior to excision is associated with better survival in breast cancer (BC), which led us to hypothesize that innervation to the tumor affects its biology and patient survival. Activity-regulated cytoskeleton-associated protein (ARC) gene expression is known to be regulated by neuronal activity. Therefore, we studied the clinical relevance of ARC gene expression as a surrogate of neuronal activity in BC.

View Article and Find Full Text PDF

Accurate gametogenesis requires the establishment of the telomere bouquet, an evolutionarily conserved, 3D chromosomal arrangement. In this spatial configuration, telomeres temporarily aggregate at the nuclear envelope during meiotic prophase, which facilitates chromosome pairing and recombination. The mechanisms governing the assembly of the telomere bouquet remain largely unexplored, primarily due to the challenges in visualizing and manipulating the bouquet.

View Article and Find Full Text PDF

Background: SET domain-containing protein 4 (SETD4) is a histone methyltransferase that has been shown to modulate cell proliferation, differentiation, and inflammatory responses by regulating histone H4 trimethylation (H4K20me3). Previous reports have demonstrated its function in the quiescence of cancer stem cells as well as drug resistance in several cancers. A limited number of systematic studies have examined SETD4's role in the tumor microenvironment, pathogenesis, prognosis, and therapeutic response.

View Article and Find Full Text PDF

Homologous recombination promotes non-immunogenic mitotic cell death upon DNA damage.

Nat Cell Biol

January 2025

Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia.

Double-strand breaks (DSBs) can initiate mitotic catastrophe, a complex oncosuppressive phenomenon characterized by cell death during or after cell division. Here we unveil how cell cycle-regulated DSB repair guides disparate cell death outcomes through single-cell analysis of extended live imaging. Following DSB induction in S or G2, passage of unresolved homologous recombination intermediates into mitosis promotes non-immunogenic intrinsic apoptosis in the immediate attempt at cell division.

View Article and Find Full Text PDF

As part of an ongoing effort to generate comprehensive resources for the experimental analysis of fourth chromosome genes in Drosophila melanogaster, the Fourth Chromosome Resource Project has used CRISPR mutagenesis with single guide RNAs to isolate mutations in 62 of the 80 fourth chromosome, protein-coding genes. These mutations were induced on a fourth chromosome bearing a basal FRT insertion to facilitate experimental approaches involving FLP recombinase-induced mitotic recombination. To permit straightforward comparisons among mutant stocks, most of the mutations were generated on isogenic fourth chromosomes, which were then crossed into a common genetic background.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!