Active mobile dosimetry unit (Liulin), passive plastic nuclear track detectors (PNTD) and thermoluminescent detectors (TLD) were exposed in a C290 MeV/n beam at HIMAC-BIO (NIRS, Japan). Two different types of beam configuration were used--monoenergetic beam (MONO) and spread-out Bragg peak (SOBP); the detectors were placed at several depths from the entrance up to the depths behind the Bragg peak. Relative response of TLDs in beams has been studied as a function of the depth, and it was re-proved that it can depend on the linear energy transfer (LET). Liulin measures energy deposition in Si; the spectra of energy deposited in Si can be transformed to the spectra of lineal energy or LET. PNTDs are able to determine the LET of registered particles directly. The limitation of both methods is in the range in which they can determine the LET-Liulin is able to measure perpendicularly incident charged particles up to ∼35 keV/µm (in water), PNTD can measure from ∼7 to 400 keV/µm, independently of the registration angle. The results from both methods are compared and combined for both beams' configuration, and a good agreement is observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/rpd/ncq532 | DOI Listing |
J Am Chem Soc
January 2025
Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, China.
Palladium (Pd) catalysts are promising for electrochemical reduction of CO to CO but often can be deactivated by poisoning owing to the strong affinity of *CO on Pd sites. Theoretical investigations reveal that different configurations of *CO endow specific adsorption energies, thereby dictating the final performances. Here, a regulatory strategy toward *CO absorption configurations is proposed to alleviate CO poisoning by simultaneously incorporating Cu and Zn atoms into ultrathin Pd nanosheets (NSs).
View Article and Find Full Text PDFPLoS One
January 2025
Department of Computer and Information Sciences, University of Northumbria, Newcastle Upon Tyne, United Kingdom.
Burnout of healthcare workers is of increasing concern as workload pressures mount. Burnout is usually conceptualised as resulting from external pressures rather than internal resilience and although is not a diagnosable condition, it is related to help seeking for its psychological sequelae. To understand how staff support services can intervene with staff heading for burnout, it is important to understand what other intrapsychic factors are related to it.
View Article and Find Full Text PDFSmall
January 2025
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
Single-atom catalysts (SACs) with unique geometric and electronic configurations have triggered great interest in many important reactions. However, controllably modulating the electronic structure of metal centers to enhance catalytic performance remains a challenge. Here, the electronic structure of Ni centers over Ni-NC SACs by introducing electron-rich phosphorus or electron-deficient boron for electrochemical CO reduction (CORR) is systematically tailored.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Department of Mechanical Engineering, Universidad Técnica Federico Santa María, Valparaíso, Chile.
The standard Poisson-Boltzmann (PB) model for molecular electrostatics assumes a sharp variation of the permittivity and salt concentration along the solute-solvent interface. The discontinuous field parameters are not only difficult numerically, but also are not a realistic physical picture, as it forces the dielectric constant and ionic strength of bulk in the near-solute region. An alternative to alleviate some of these issues is to represent the molecular surface as a diffuse interface, however, this also presents challenges.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
January 2025
Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands.
The Respiratory Exchange Ratio (RER), which is the ratio of total carbon dioxide produced over total oxygen consumed, serves as a qualitative measure to determine the substrate usage of a particular organism on the whole-body level. Quantification of RER by its direct conversion into %Glucose (%G) and %Lipid oxidation (%L) at a given timepoint can be done by utilizing nonprotein respiratory quotient tables. These tables, however, are limited to specific increments, and intermediate RER values are not covered by these tables.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!