Biocompatibility of electrospun halloysite nanotube-doped poly(lactic-co-glycolic acid) composite nanofibers.

J Biomater Sci Polym Ed

Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, P. R. China.

Published: March 2012

Organic/inorganic hybrid nanofiber systems have generated great interest in the area of tissue engineering and drug delivery. In this study, halloysite nanotube (HNT)-doped poly(lactic-co-glycolic acid) (PLGA) composite nanofibers were fabricated via electrospinning and the influence of the incorporation of HNTs within PLGA nanofibers on their in vitro biocompatibility was investigated. The morphology, mechanical and thermal properties of the composite nanofibers were characterized by scanning electron microscopy (SEM), tensile test, differential scanning calorimetry and thermogravimetric analysis. The adhesion and proliferation of mouse fibroblast cells cultured on both PLGA and HNT-doped PLGA fibrous scaffolds were compared through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay of cell viability and SEM observation of cell morphology. We show that the morphology of the PLGA nanofibers does not appreciably change with the incorporation of HNTs, except that the mean diameter of the fibers increased with the increase of HNT incorporation in the composite. More importantly, the mechanical properties of the nanofibers were greatly improved. Similar to electrospun PLGA nanofibers, HNT-doped PLGA nanofibers were able to promote cell attachment and proliferation, suggesting that the incorporation of HNTs within PLGA nanofibers does not compromise the biocompatibility of the PLGA nanofibers. In addition, we show that HNT-doped PLGA scaffolds allow more protein adsorption than those without HNTs, which may provide sufficient nutrition for cell growth and proliferation. The developed electrospun HNT-doped composite fibrous scaffold may find applications in tissue engineering and pharmaceutical sciences.

Download full-text PDF

Source
http://dx.doi.org/10.1163/092050610X550340DOI Listing

Publication Analysis

Top Keywords

plga nanofibers
24
composite nanofibers
12
incorporation hnts
12
hnt-doped plga
12
nanofibers
10
plga
10
polylactic-co-glycolic acid
8
tissue engineering
8
hnts plga
8
composite
5

Similar Publications

Sodium alginate/chitosan composite scaffold reinforced with biodegradable polyesters/gelatin nanofibers for cartilage tissue engineering.

Int J Biol Macromol

January 2025

Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China. Electronic address:

Cartilage repair remains a significant challenge in tissue engineering. The Sodium alginate/Chitosan hydrogel scaffold, fabricated from natural polymers, has the potential to promote tissue regeneration. However, its poor mechanical performance limits its application.

View Article and Find Full Text PDF

Adipose tissue is crucial for medical applications such as tissue reconstruction, cosmetic procedures, and correcting soft tissue deformities. Significant advances in the use of adipose tissue have been achieved through Coleman's studies in fat grafting, which gained widespread acceptance due to its effectiveness and safety. Despite its benefits, adipose tissue grafting faces several limitations, including high absorption rates due to insufficient support or anchorage, replacement by fibrous tissue, migration from the intended site, and loss of the initial desired morphology post-administration.

View Article and Find Full Text PDF

Introduction: Deep, second- and third-degree burn injuries may lead to irreversible damage to the traumatized tissue and to coagulation or thrombosis of the microvessels, further compromising wound healing. Engineered, morphologically gradient drug-eluting nanofiber dressings promote wound healing by mimicking tissue structure and providing sustained drug delivery, which is particularly beneficial for wound management.

Methods: This study exploited a resorbable, radially aligned nanofiber dressing that provides the sustained gradient release of metformin at the wound site using a pin-ring electrospinning technique and a differential membrane-thickness approach.

View Article and Find Full Text PDF

Injectable interface-bonded fiber-reinforced thiolated chitosan hydrogels for enhanced cellular activities and cartilage regeneration.

Carbohydr Polym

January 2025

Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China; Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers, China. Electronic address:

Article Synopsis
  • Injectable hydrogels with fibrous structures are gaining attention for cartilage repair due to their mechanical and biological properties.
  • A new chemically cross-linked hydrogel called CSSH-PP was developed to improve cell proliferation and cartilage regeneration, showing a 100% increase in compressive strength over traditional hydrogels.
  • In animal studies, CSSH-PP enhanced cell migration and host cell infiltration, promoting blood vessel formation and improving tissue repair in damaged cartilage.
View Article and Find Full Text PDF

Nanofibrous 3D scaffolds capable of individually controlled BMP and FGF release for the regulation of bone regeneration.

Acta Biomater

December 2024

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA. Electronic address:

The current clinical applications of bone morphogenetic proteins (BMPs) are limited to only a few specific indications. Locally controlled delivery of combinations of growth factors can be a promising strategy to improve BMP-based bone repair. However, the success of this approach requires the development of an effective release system and the correct choice of growth factors capable of enhancing BMP activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!