Filamentous cyanobacteria of the order Nostocales are primordial multicellular organisms, a property widely considered unique to eukaryotes. Their filaments are composed of hundreds of mutually dependent vegetative cells and regularly spaced N(2)-fixing heterocysts, exchanging metabolites and signalling molecules. Furthermore, they may differentiate specialized spore-like cells and motile filaments. However, the structural basis for cellular communication within the filament remained elusive. Here we present that mutation of a single gene, encoding cell wall amidase AmiC2, completely changes the morphology and abrogates cell differentiation and intercellular communication. Ultrastructural analysis revealed for the first time a contiguous peptidoglycan sacculus with individual cells connected by a single-layered septal cross-wall. The mutant forms irregular clusters of twisted cells connected by aberrant septa. Rapid intercellular molecule exchange takes place in wild-type filaments, but is completely abolished in the mutant, and this blockage obstructs any cell differentiation, indicating a fundamental importance of intercellular communication for cell differentiation in Nostoc. AmiC2-GFP localizes in the cell wall with a focus in the cross walls of dividing cells, implying that AmiC2 processes the newly synthesized septum into a functional cell-cell communication structure during cell division. AmiC2 thus can be considered as a novel morphogene required for cell-cell communication, cellular development and multicellularity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2958.2011.07554.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!