A novel fluorescent zinc sensor was designed and synthesized on ordered mesoporous silica material, MCM-41, with N-(quinolin-8-yl)-2-[3-(triethoxysilyl)propylamino]acetamide (QTEPA; 3) using a simple one-step molecular self-assembly of the silane. The solution and solid samples were characterized using solid-state nuclear magnetic resonance, transmission electron microscopy, diffuse-reflectance infrared Fourier transform, and thermogravimetric analysis techniques. The QTEPA-modified MCM-41 (4) shows 3-fold fluorescence emission enhancement and about a 55 nm red shift upon addition of 1 μM Zn(II) ions in a Tris-HCl (pH 7.22) aqueous buffer solution. The UV-vis absorption maximum is at 330 ± 5 nm, and the fluorescence emission maximum wavelength is at 468 nm, with an increase in quantum yield from 0.032 to 0.106 under the same conditions. The presence of other metal ions has no observable effect on the sensitivity and selectivity of 4. This system selectively detects Zn(II) ions with submicromolar detection to a limit of 0.1 μM. The MCM-41-based systems have the advantage that they can be employed in aqueous solutions without any aggregation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am100923x | DOI Listing |
Small
January 2025
Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, China.
Thermal management is a key link in improving energy utilization and preparing insulation materials with excellent performance is the core technological issue. Complex and irregular pore structures of insulation materials hinder the exploration of structure-property relationships and the further promotion of material performance. Ordered mesoporous silica (OMS) is a kind of porous material with ordered frameworks.
View Article and Find Full Text PDFSmall
January 2025
Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu, 610031, China.
Although carbon-based supercapacitors (SCs) hold the advantages of high-power and large-current characteristics, they are difficult to realize ultrahigh-power density (> 200 kW kg) and maintain almost constant energy density at ultrahigh power. This limitation is mainly due to the difficulty in balancing the structural order related to the electrical conductivity of carbon materials and the structural disorder related to the pore structure. Herein, we design a novel super-structured tubular carbon (SSTC) with a crosslinked porous conductive network to solve the structure order-disorder tradeoff effect in carbon materials.
View Article and Find Full Text PDFAnal Methods
January 2025
CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, 364 002, India.
In this study, magnesium-doped lithium manganese oxide nanoparticles were prepared through a solid-state reaction technique, and their surface was modified with mesoporous silica. The surface-modified material exhibited a significantly enhanced BET surface area from 5.791 to 66.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Mathematical, Physical and Computer Sciences, University of Parma, 43124 Parma, Italy.
This study presents an efficient and environmentally sustainable synthesis of ZnO nanoparticles using a starch-mediated sol-gel approach. This method yields crystalline mesoporous ZnO NPs with a hexagonal wurtzite structure. The synthesized nanoparticles demonstrated remarkable multifunctionality across three critical applications.
View Article and Find Full Text PDFLangmuir
January 2025
Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031, PR China.
This work develops Fe-Ni particles loaded on biochar (Fe-Ni/BC) to remove U(VI) efficiently. Fe-Ni bimetallic particles loaded on biochar (BC) can improve stability and reactivity, and the mesoporous structure of BC can effectively reduce Fe aggregation. The removal ability of Fe-Ni/BC is higher than that of Fe-Ni, BC, and Fe/BC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!