A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Low-temperature approach to high-yield and reproducible syntheses of high-quality small-sized PbSe colloidal nanocrystals for photovoltaic applications. | LitMetric

Small-sized PbSe nanocrystals (NCs) were synthesized at low temperature such as 50-80 °C with high reaction yield (up to 100%), high quality, and high synthetic reproducibility, via a noninjection-based one-pot approach. These small-sized PbSe NCs with their first excitonic absorption in wavelength shorter than 1200 nm (corresponding to size < ∼3.7 nm) were developed for photovoltaic applications requiring a large quantity of materials. These colloidal PbSe NCs, also called quantum dots, are high-quality, in terms of narrow size distribution with a typical standard deviation of ∼7-9%, excellent optical properties with high quantum yield of ∼50-90% and small full width at half-maximum of ∼130-150 nm of their band-gap photoemission peaks, and high storage stability. Our synthetic design aimed at promotion of the formation of PbSe monomers for fast and sizable nucleation with the presence of a large number of nuclei at low temperature. For formation of the PbSe monomer, our low-temperature approach suggests the existence of two pathways of Pb-Se (route a) and Pb-P (route b) complexes. Either pathway may dominate, depending on the method used and its experimental conditions. Experimentally, a reducing/nucleation agent, diphenylphosphine, was added to enhance route b. The present study addresses two challenging issues in the NC community, the monomer formation mechanism and the reproducible syntheses of small-sized NCs with high yield and high quality and large-scale capability, bringing insight to the fundamental understanding of optimization of the NC yield and quality via control of the precursor complex reactivity and thus nucleation/growth. Such advances in colloidal science should, in turn, promote the development of next-generation low-cost and high-efficiency solar cells. Schottky-type solar cells using our PbSe NCs as the active material have achieved the highest power conversion efficiency of 2.82%, in comparison with the same type of solar cells using other PbSe NCs, under Air Mass 1.5 global (AM 1.5G) irradiation of 100 mW/cm(2).

Download full-text PDF

Source
http://dx.doi.org/10.1021/am101129mDOI Listing

Publication Analysis

Top Keywords

pbse ncs
16
small-sized pbse
12
solar cells
12
low-temperature approach
8
reproducible syntheses
8
pbse
8
photovoltaic applications
8
low temperature
8
high quality
8
formation pbse
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!