Position information in indoor environments can be procured using diverse approaches. Due to the ubiquitous presence of WLAN networks, positioning techniques in these environments are the scope of intense research. This paper explores two strategies for space partitioning when utilizing cascade-connected Artificial Neural Networks (ANNs) structures for indoor WLAN positioning. A set of cascade-connected ANN structures with different space partitioning strategies are compared mutually and to the single ANN structure. The benefits of using cascade-connected ANNs structures are shown and discussed in terms of the size of the environment, number of subspaces and partitioning strategy. The optimal cascade-connected ANN structures with space partitioning show up to 50% decrease in median error and up to 12% decrease in the average error with respect to the single ANN model. Finally, the single ANN and the optimal cascade-connected ANN model are compared against other well-known positioning techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1142/S0129065711002614DOI Listing

Publication Analysis

Top Keywords

space partitioning
16
cascade-connected ann
16
ann structures
12
single ann
12
partitioning strategies
8
indoor wlan
8
wlan positioning
8
positioning techniques
8
anns structures
8
structures space
8

Similar Publications

For similar species to co-occur in places where resources are limited, they need to adopt strategies that partition resources to reduce competition. Our understanding of the mechanisms behind resource partitioning among sympatric marine predators is evolving, but we lack a clear understanding of how environmental change is impacting these dynamics. We investigated spatial and trophic resource partitioning among three sympatric seabirds with contrasting biological characteristics: greater crested terns Thalasseus bergii (efficient flyer, limited diver, and preference for high quality forage fish), little penguins Eudyptula minor (flightless, efficient diver, and preference for high quality forage fish) and silver gulls Chroicocephalus novaehollandiae (efficient flyer, limited diver and generalist diet).

View Article and Find Full Text PDF

Rapid Fluid Velocity Field Prediction in Microfluidic Mixers via Nine Grid Network Model.

Micromachines (Basel)

December 2024

Innovation Center for Electronic Design Automation Technology, Hangzhou Dianzi University, Hangzhou 310018, China.

The rapid advancement of artificial intelligence is transforming the computer-aided design of microfluidic chips. As a key component, microfluidic mixers are widely used in bioengineering, chemical experiments, and medical diagnostics due to their efficient mixing capabilities. Traditionally, the simulation of these mixers relies on the finite element method (FEM), which, although effective, presents challenges due to its computational complexity and time-consuming nature.

View Article and Find Full Text PDF

Interspecific interactions are important drivers of population dynamics and species distribution. These relationships can increase niche partitioning between sympatric species, which can differentiate space and time use or modify their feeding strategies. Roe deer and red deer are two of the most widespread ungulate species in Europe and show spatial and dietary overlap.

View Article and Find Full Text PDF

The linear scaling divide-expand-consolidate (DEC) framework is expanded to include unrestricted Hartree-Fock references. By partitioning the orbital space and employing local molecular orbitals, the full molecular calculation can be performed as independent calculations on individual fragments, making the method well-suited for massively parallel implementations. This approach also incorporates error control through the fragment optimization threshold (FOT), which maintains precision and consistency throughout the calculations.

View Article and Find Full Text PDF

Synthesis of pillar-layered metal-organic frameworks with variable backbones through sequence control.

Nat Chem

January 2025

Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, China.

The properties and functions of metal-organic frameworks (MOFs) can be tailored by tuning their structure, including their shape, porosity and topology. However, the design and synthesis of complex structures in a predictable manner remains challenging. Here we report the preparation of a series of isomeric pillar-layered MOFs, and we show that their three-dimensional topology can be controlled by altering the layer stacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!