AI Article Synopsis

  • Intermolecular interactions involving aromatic rings play a crucial role in chemical and biological recognition, notably through anion-π interactions where normally electron-rich aromatics repel anions.
  • The study presents the first theoretical and experimental evidence of anion-π interactions between electron-rich alkylbenzene and a fluoride ion, evidenced by the formation of a stable sandwich complex in a cyclophane cavity.
  • The researchers utilized techniques like NMR and fluorescence spectroscopy to show that the complex can serve as a selective fluorescent sensor for fluoride ions, with distinct fluorescence changes upon binding.

Article Abstract

Intermolecular interactions that involve aromatic rings are key processes in both chemical and biological recognition. It is common knowledge that the existence of anion-π interactions between anions and electron-deficient (π-acidic) aromatics indicates that electron-rich (π-basic) aromatics are expected to be repulsive to anions due to their electron-donating character. Here we report the first concrete theoretical and experimental evidence of the anion-π interaction between electron-rich alkylbenzene rings and a fluoride ion in CH(3)CN. The cyclophane cavity bridged with three naphthoimidazolium groups selectively complexes a fluoride ion by means of a combination of anion-π interactions and (C-H)(+)···F(-)-type ionic hydrogen bonds. (1)H NMR, (19)F NMR, and fluorescence spectra of 1 and 2 with fluoride ions are examined to show that only 2 can host a fluoride ion in the cavity between two alkylbenzene rings to form a sandwich complex. In addition, the cage compounds can serve as highly selective and ratiometric fluorescent sensors for a fluoride ion. With the addition of 1 equiv of F(-), a strongly increased fluorescence emission centered at 385 nm appears at the expense of the fluorescence emission of 2 centered at 474 nm. Finally, isothermal titration calorimetry (ITC) experiments were performed to obtain the binding constants of the compounds 1 and 2 with F(-) as well as Gibbs free energy. The 2-F(-) complex is more stable than the 1-F(-) complex by 1.87 kcal mol(-1), which is attributable to the stronger anion-π interaction between F(-) and triethylbenzene.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201002105DOI Listing

Publication Analysis

Top Keywords

fluoride ion
16
anion-π interaction
12
interaction electron-rich
8
anion-π interactions
8
alkylbenzene rings
8
fluorescence emission
8
emission centered
8
fluoride
6
anion-π
5
induction-driven stabilization
4

Similar Publications

Application of lanthanum-modified silk fibroin/polyvinyl alcohol film for highly selective defluoridation in brick tea infusion.

Int J Biol Macromol

January 2025

State Key Laboratory of Tea Plant Biology and Utilization, Joint Research Center for Food Nutrition and Health of IHM and Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, Anhui Agricultural University, Hefei 230036, PR China; College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, PR China. Electronic address:

To mitigate the risk associated with water-soluble fluoride in tea and to have less influence on the contents of tea infusion, a highly selective lanthanum modified silk fibroin (SF) and polyvinyl alcohol (PVA) composite film (SF/PVA-La) was prepared to remove fluoride from brick tea infusion. Notably, SF/PVA-La could remove about 48 % of the fluoride from in brick tea infusion within 30 min. Importantly, the reduction in total tea polyphenols in brick tea did not exceed 10 %, and the reduction in caffeine was only 0.

View Article and Find Full Text PDF

Can ChatGPT be guide in pediatric dentistry?

BMC Oral Health

January 2025

Department of Pediatric Dentistry, Faculty of Dentistry, Tokat Gaziosmanpaşa University, Tokat, Türkiye.

Background: The use of ChatGPT in the field of health has recently gained popularity. In the field of dentistry, ChatGPT can provide services in areas such as, dental education and patient education. The aim of this study was to evaluate the quality, readability and originality of pediatric patient/parent information and academic content produced by ChatGPT in the field of pediatric dentistry.

View Article and Find Full Text PDF

Amorphous-dominated magnesium oxide hollow spheres (A-MgO) were prepared using a spray-drying method in this study. These hollow spheres exhibited excellent sphericity, large specific surface areas, and abundant porosity. A-MgO exhibited outstanding fluoride adsorption properties, with a maximum adsorption capacity of 260.

View Article and Find Full Text PDF

To investigate the oral health-related quality of life (OHRQoL) of young children in a randomized clinical trial (RCT) of silver diammine fluoride (SDF) and five percent sodium fluoride varnish (NaFV) to manage early childhood caries (ECC). Children younger than 72 months of age with active dentinal caries lesions (ICDAS 5 or 6) in primary teeth received two applications of 38 percent SDF and five percent NaFV as part of an RCT testing three different frequency regimes (one, four, and six months apart). The Early Childhood Oral Health Impact Scale (ECOHIS) questionnaire was completed at three study visits.

View Article and Find Full Text PDF
Article Synopsis
  • PVDF is a promising material for solid polymer electrolytes because of its good thermal stability and wide electrochemical range, but it faces issues with poor ionic conductivity due to the formation of a harmful alkaline layer on garnet fillers.
  • LiOH on the surface of these fillers contributes to the breakdown of PVDF chains, leading to unwanted chemical bonds; this can be mitigated by treating the fillers with acetic acid to create alkali-free garnets.
  • The modified PVDF electrolyte shows significantly improved ionic conductivity and a wider electrochemical window, resulting in better performance for solid-state lithium batteries, evidenced by higher discharge capacity and cycle stability.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!