This study is aimed at providing a dosimetric evaluation of the irregular motion of lung tumors due to variations in patients' respiration. Twenty-three lung cancer patients are retrospectively enrolled in this study. The motion of the patient clinical target volume is simulated and two types of irregularities are defined: characteristic and uncharacteristic motions. Characteristic irregularities are representative of random fluctuations in the observed target motion. Uncharacteristic irregular motion is classified as systematic errors in determination of the target motion during the planning session. Respiratory traces from measurement of patient abdominal motion are also used for the target motion simulations. Characteristic irregular motion was observed to cause minimal changes in target dosimetry with the largest effect of 2.5% ± 0.9% (1σ) reduction in the minimum target dose (D(min)) observed for targets that move 2 cm on average and exhibiting 50% amplitude variations within a session. However, uncharacteristic irregular motion introduced more drastic changes in the clinical target volume (CTV) dose; 4.1% ± 1.7% reduction for 1 cm motion and 9.6% ± 1.7% drop for 2 cm. In simulations with patients' abdominal motion, corresponding changes in target dosimetry were observed to be negligible (<0.1%). Only uncharacteristic irregular motion was identified as a clinically significant source of dosimetric uncertainty.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0031-9155/56/3/019 | DOI Listing |
Nat Commun
January 2025
Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
Aerial manipulators can manipulate objects while flying, allowing them to perform tasks in dangerous or inaccessible areas. Advanced aerial manipulation systems are often based on rigid-link mechanisms, but the balance between dexterity and payload capacity limits their broader application. Combining unmanned aerial vehicles with continuum manipulators emerges as a solution to this trade-off, but these systems face challenges with large actuation systems and unstable control.
View Article and Find Full Text PDFComput Vis ECCV
November 2024
University of Minnesota, Minneapolis.
Diffusion models have emerged as powerful generative techniques for solving inverse problems. Despite their success in a variety of inverse problems in imaging, these models require many steps to converge, leading to slow inference time. Recently, there has been a trend in diffusion models for employing sophisticated noise schedules that involve more frequent iterations of timesteps at lower noise levels, thereby improving image generation and convergence speed.
View Article and Find Full Text PDFBiomech Model Mechanobiol
January 2025
Laboratoire d'Imagerie Biomédicale (LIB), Institut National de La Recherche Médicale (INSERM), Centre National de La Recherche Scientifique (CNRS), Sorbonne Université, Paris, France.
Atrial fibrillation (AF) is characterized by rapid and irregular contraction of the left atrium (LA). Impacting LA haemodynamics, this increases the risk of thrombi development and stroke. Flow conditions preceding stroke in these patients are not well defined, partly due the limited resolution of 4D flow magnetic resonance imaging (MRI).
View Article and Find Full Text PDFJ Anat
January 2025
Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.
Anecdotally, horses' gaits sound rhythmic. Are they really? In this study, we quantified the motor rhythmicity of horses across three different gaits (walk, trot, and canter). For the first time, we adopted quantitative tools from bioacoustics and music cognition to quantify locomotor rhythmicity.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA.
The vestibular system is vital for maintaining stable vision during daily activities. When peripheral vestibular input is lost, patients initially experience impaired gaze stability due to reduced effectiveness of the vestibular-ocular-reflex pathway. To aid rehabilitation, patients are often prescribed gaze-stabilization exercises during which they make self-initiated active head movements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!