Arsenate adsorption and desorption kinetics on a Fe(III)-modified montmorillonite.

J Hazard Mater

INQUISUR, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina.

Published: February 2011

The adsorption-desorption kinetics of arsenate on a Fe(III)-modified montmorillonite (Fe-M) was studied at different arsenate concentrations, pH and stirring rates. The synthesized solid was a porous sample with Fe(III) present as a mix of monomeric and polymeric Fe(III) species in the interlayer and on the external surface. Adsorption took place in a two-step mechanism, with an initial fast binding of arsenate to Fe(III) species at the external surface (half-lives of 1 min or shorter) followed by a slower binding to less accessible Fe(III) species in pores and the interlayer (half-lives of around 1 h). Desorption kinetics also reflected the presence of externally and internally adsorbed arsenate. At pH 6 the maximum adsorbed arsenate was 52 μmol/g, a value that is low as compared to adsorption on ferrihydrite (700 μmol/g) and goethite (192-220 μmol/g). However, since the Fe(III) content of Fe-M is much lower than that of ferrihydrite and goethite, Fe(III) species in Fe-M are more efficient in binding arsenate than in ferrihydrite or goethite (one As atom is attached every 8.95 iron atoms). This high binding efficiency indicates that Fe(III) species are well spread on montmorillonite, forming small oligomeric species or surface clusters containing just a few iron atoms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2010.12.074DOI Listing

Publication Analysis

Top Keywords

feiii species
20
desorption kinetics
8
feiii-modified montmorillonite
8
external surface
8
binding arsenate
8
adsorbed arsenate
8
ferrihydrite goethite
8
iron atoms
8
arsenate
7
feiii
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!