Alpha-actinin (α-actinin) is a ubiquitous cytoskeletal protein, which belongs to the superfamily of filamentous actin (F-actin) crosslinking proteins. It is present in multiple subcellular regions of both muscle and non-muscle cells, including cell-cell and cell-matrix contact sites, cellular protrusions and stress fiber dense regions and thus, it seems to bear multiple important roles in the cell by linking the cytoskeleton to many different transmembrane proteins in a variety of junctions. Four isoforms of human α-actinin have already been identified namely, the "muscles" α-actinin-2 and α-actinin-3 and the "non-muscles" α-actinin-1 and α-actinin-4. The precise functions of α-actinin isoforms as well as the precise role and significance of their binding to F-actin particularly in-vivo, have been elusive. They are generally believed to represent key structural components of large-scale F-actin cohesion in cells required for cell shape and motility. α-Actinin-2 has been implicated in myopathies such as nemalin body myopathy, hypertrophic and dilated cardiomyopathy and it may have at least an indirect pathogenetic role in diseases of the central nervous system (CNS) like schizophrenia, epilepsy, ischemic brain damage, CNS lupus and neurodegenerative disorders. The role of "non-muscle" α-actinins in the kidney seems to be crucial as an essential component of the glomerular filtration barrier. Therefore, they have been implicated in the pathogenesis of familial focal segmental glomerulosclerosis, nephrotic syndrome, IgA nephropathy, focal segmental glomerulosclerosis and minimal change disease. α-Actinin is also expressed on the membrane and cytosol of parenchymal and ductal cells of the liver and it seems that it interacts with hepatitis C virus in an essential way for the replication of the virus. Finally α-actinin, especially α-actinin-4, has been implicated in cancer cell progression and metastasis, as well as the migration of several cell types participating in the immune response. Based on these functions, the accumulating reported evidence of the importance of α-actinin as a target autoantigen in the pathogenesis of autoimmune diseases, particularly systemic lupus erythematosus and autoimmune hepatitis, is also discussed along with the possible perspectives that are potentially emerging from the study of this peculiar molecule in health and disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.autrev.2010.12.009DOI Listing

Publication Analysis

Top Keywords

focal segmental
8
segmental glomerulosclerosis
8
α-actinin
6
alpha-actinin multidisciplinary
4
multidisciplinary protein
4
role
4
protein role
4
role b-cell
4
b-cell driven
4
driven autoimmunity
4

Similar Publications

Prone Transpsoas Lumbar Interbody Fusion for Degenerative Disc Disease.

JBJS Essent Surg Tech

January 2025

Department of Neurosurgery, Center for Neuroscience and Spine, Virginia Mason Medical Center, Seattle, Washington.

Background: Prone transpsoas lumbar interbody fusion (PTP) is a newer technique to treat various spinal disc pathologies. PTP is a variation of lateral lumbar interbody fusion (LLIF) that is performed with the patient prone rather than in the lateral decubitus position. This approach offers similar benefits of lateral spinal surgery, which include less blood loss, shorter hospital stay, and quicker recovery compared with traditional open spine surgery.

View Article and Find Full Text PDF

Background: Anterior uveitis is a common manifestation in individuals with rheumatic conditions such as spondylarthritis, Behçet's syndrome, juvenile idiopathic arthritis, and sarcoidosis. Clinical differentiation between granulomatous and non-granulomatous corneal endothelial exudates is crucial to subsequent diagnosis and treatment. Anterior segment optical coherence tomography (AS-OCT) can ensure an accurate differential diagnosis and appropriate follow-up after local and systemic therapy.

View Article and Find Full Text PDF

Background: Accurate segmentation of rib fractures represents a pivotal procedure within surgical interventions. This meticulous process not only mitigates the likelihood of postoperative complications but also facilitates expedited patient recuperation. However, rib fractures in computed tomography (CT) images exhibit an uneven morphology and are not fixed in position, posing difficulties in segmenting fractures.

View Article and Find Full Text PDF

Background: The limitation in spatial resolution of bone scintigraphy, combined with the vast variations in size, location, and intensity of bone metastasis (BM) lesions, poses challenges for accurate diagnosis by human experts. Deep learning-based analysis has emerged as a preferred approach for automating the identification and delineation of BM lesions. This study aims to develop a deep learning-based approach to automatically segment bone scintigrams for improving diagnostic accuracy.

View Article and Find Full Text PDF

Seg-SkiNet: adaptive deformable fusion convolutional network for skin lesion segmentation.

Quant Imaging Med Surg

January 2025

School of Computer and Control Engineering, Yantai University, Yantai, China.

Background: Skin lesion segmentation plays a significant role in skin cancer diagnosis. However, due to the complex shapes, varying sizes, and different color depths, precise segmentation of skin lesions is a challenging task. Therefore, the aim of this study was to design a customized deep learning (DL) model for the precise segmentation of skin lesions, particularly for complex shapes and small target lesions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!