Three key factors involved in successful plant disease development include the presence of a susceptible host, a virulent pathogen, and a disease-conducive environment. Our understanding of how environmental factors influence disease-conducive or disease-suppressive conditions, and how a pathogen advantageously capitalizes on them, is quite limited. Utilizing the model pathosystem Magnaporthe oryzae-Oryza sativa, we found a significant light-dependent disease suppression. Our genetic data suggest that the blue-light receptor MGWC-1 in M. oryzae is involved in light-dependent disease suppression during the dark-phase (disease-conducive light condition) immediately after pathogen-host contact. Sensing "darkness" is accomplished by MGWC-1, a blue-light receptor in M. oryzae. To explore the potential molecular mechanisms of light-dependent disease suppression we performed a genome-wide microarray experiment and identified several groups of gene families that are differentially regulated during the light-to-dark transition. Our genetic and molecular data provide insights into how a fungal pathogen utilizes ambient light signals for successful disease development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fgb.2011.01.004DOI Listing

Publication Analysis

Top Keywords

light-dependent disease
12
disease suppression
12
genetic molecular
8
disease development
8
blue-light receptor
8
disease
5
molecular characterization
4
characterization blue
4
blue light
4
light photoreceptor
4

Similar Publications

The lack of effective therapies for visual restoration in Retinitis pigmentosa and macular degeneration has led to the development of new strategies, such as optogenetics and retinal prostheses. However, visual restoration is poor due to the massive light-evoked activation of retinal neurons, regardless of the segregation of visual information in ON and OFF channels, which is essential for contrast sensitivity and spatial resolution. Here, we show that Ziapin2, a membrane photoswitch that modulates neuronal capacitance and excitability in a light-dependent manner, is capable of reinstating, in mouse and rat genetic models of photoreceptor degeneration, brisk and sluggish ON, OFF, and ON-OFF responses in retinal ganglion cells evoked by full-field stimuli, with reactivation of their excitatory and inhibitory conductances.

View Article and Find Full Text PDF

Photoswitchable Diazocine Derivative for Adenosine A Receptor Activation in Psoriasis.

J Am Chem Soc

January 2025

Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat 08907, Spain.

Incorporating photoisomerizable moieties within drugs offers the possibility of rapid and reversible light-dependent switching between active and inactive configurations. Here, we developed a photoswitchable adenosine A receptor (AR) agonist that confers optical control on this G protein-coupled receptor through noninvasive topical skin irradiation in an animal model of psoriasis. This was achieved by covalently bonding an adenosine-5'-methyluronamide moiety to a diazocine photochrome, whose singular photoswitching properties facilitated repeated interconversion between a thermally stable, biologically inactive agonist form and a photoinduced, pharmacologically active configuration.

View Article and Find Full Text PDF

Myopia (short-sightedness) is the most common ocular disorder. It generally develops after over-exposure to aberrant visual environments, disrupting emmetropization mechanisms that should match eye growth with optical power. A pre-screening of strongly associated myopia-risk genes identified through human genome-wide association studies implicates efemp1 in myopia development, but how this gene impacts ocular growth remains unclear.

View Article and Find Full Text PDF

In polarized cells, the precise regulation of protein transport to and from the plasma membrane is crucial to maintain cellular function. Dysregulation of intracellular protein transport in neurons can lead to neurodegenerative diseases such as Retinitis Pigmentosa, Alzheimer's and Parkinson's disease. Here we used the light-dependent transport of the TRPL (transient receptor potential-like) ion channel in photoreceptor cells to study the role of Rab proteins in TRPL recycling.

View Article and Find Full Text PDF

Optogenetic manipulation of lysosomal physiology and autophagic activity.

Autophagy

November 2024

Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.

Lysosomes are essential degradative organelles and signaling hubs within cells, playing a crucial role in the regulation of macroautophagy/autophagy. Dysfunction of lysosomes and impaired autophagy are closely associated with the development of various neurodegenerative diseases. Enhancing lysosomal activity and boosting autophagy levels holds great promise as effective strategies for treating these diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!