Burkavidin: a novel secreted biotin-binding protein from the human pathogen Burkholderia pseudomallei.

Protein Expr Purif

Institute of Inorganic Chemistry, Department of Chemistry, University of Basel, Spitalstrasse 51, 4056 Basel, Switzerland.

Published: June 2011

The avidin-biotin technology has many applications, including molecular detection; immobilization; protein purification; construction of supramolecular assemblies and artificial metalloenzymes. Here we present the recombinant expression of novel biotin-binding proteins from bacteria and the purification and characterization of a secreted burkavidin from the human pathogen Burkholderia pseudomallei. Expression of the native burkavidin in Escherichia coli led to periplasmic secretion and formation of a biotin-binding, thermostable, tetrameric protein containing an intra-monomeric disulphide bond. Burkavidin showed one main species as measured by isoelectric focusing, with lower isoelectric point (pI) than streptavidin. To exemplify the potential use of burkavidin in biotechnology, an artificial metalloenzyme was generated using this novel protein-scaffold and shown to exhibit enantioselectivity in a rhodium-catalysed hydrogenation reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pep.2011.01.003DOI Listing

Publication Analysis

Top Keywords

human pathogen
8
pathogen burkholderia
8
burkholderia pseudomallei
8
burkavidin
5
burkavidin novel
4
novel secreted
4
secreted biotin-binding
4
biotin-binding protein
4
protein human
4
pseudomallei avidin-biotin
4

Similar Publications

The LIM-domain-only protein LMO2 and its binding partner LDB1 are differentially required for class switch recombination.

Proc Natl Acad Sci U S A

January 2025

Department of Immunology and Microbiology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510000, China.

The LIM-domain-only protein LMO2 interacts with LDB1 in context-dependent multiprotein complexes and plays key roles in erythropoiesis and T cell leukemogenesis, but whether they have any roles in B cells is unclear. Through a CRISPR/Cas9-based loss-of-function screening, we identified LMO2 and LDB1 as factors for class switch recombination (CSR) in murine B cells. LMO2 contributes to CSR at least in part by promoting end joining of DNA double-strand breaks (DSBs) and inhibiting end resection.

View Article and Find Full Text PDF

The expression profile of the key genes of biosynthesis (VTC2, GPP, GalDH, and GalLDH) and recycling (MDHAR1, MDHAR4, and MDHAR5) of ascorbate in response to infection with the fungal pathogen Fusarium proliferatum in garlic cultivars resistant (Podnebesny) and sensitive (Dubkovsky) to Fusarium rot was determined. It was found that differences in resistance to Fusarium lead to discrepancies in the dynamics and expression of individual genes of the ascorbate pathway, as well as in the ascorbate content. It was shown that, in response to infection, the expression level of the MDHAR4 gene increases in the resistant cultivar and decreases in the Fusarium-sensitive accession.

View Article and Find Full Text PDF

Modeling Innate Immunity Causing Chronic Inflammation and Tissue Damage.

Bull Math Biol

January 2025

Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan.

Mathematical models of immune responses have traditionally focused on adaptive immunity and pathogen-immune dynamics. However, recent advances in immunology have highlighted the critical role of innate immunity. In response to physical damage or pathogen attacks, innate immune cells circulating throughout the body rapidly migrate from blood vessels and accumulate at the site of injury, triggering inflammation.

View Article and Find Full Text PDF

Diabetic wounds with chronic infections present a significant challenge, exacerbated by the growing issue of antimicrobial resistance, which often leads to delayed healing and increased morbidity. This study introduces a novel silver-zinc oxide-eugenol (Ag+ZnO+EU) nanocomposite, specifically designed to enhance antimicrobial activity and promote wound healing. The nanocomposite was thoroughly characterized using advanced analytical techniques, confirming its nanoscale structure, stability and chemical composition.

View Article and Find Full Text PDF

Management and outcome of mesh infection after abdominal wall reconstruction in a tertiary care center.

Hernia

January 2025

Department of Infectious Diseases, Hospices Civils de Lyon, Service des Maladies Infectieuses et Tropicales, 103 Grande Rue de la Croix-Rousse, Lyon, 69004, France.

Purpose: Abdominal wall reconstruction is a common surgical procedure, with a post-operative risk of mesh-associated infection of which management is poorly known. This study aims to comprehensively analyze clinical and microbiological aspects of mesh infection, treatment modalities, and associated outcomes.

Methods: Patients with abdominal mesh infection were included in a retrospective observational cohort (2010-2023).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!