AI Article Synopsis

  • The research aims to uncover the molecular pathways involved in interstitial lung diseases (ILDs) using systems biology and global gene expression data to better understand the diseases' mechanisms and identify potential biomarkers.
  • Lung tissue samples from ILD patients were analyzed for mRNA and microRNA expression, revealing differentially expressed genes that could distinguish disease stages and subtypes, as well as highlighting critical signaling pathways like TGF-β related to fibrosis.
  • Results indicate that TGF-β signaling and specific microRNAs play significant roles in disease progression and the transition of cells that contribute to the severity of ILDs.

Article Abstract

Background: The molecular pathways involved in the interstitial lung diseases (ILDs) are poorly understood. Systems biology approaches, with global expression data sets, were used to identify perturbed gene networks, to gain some understanding of the underlying mechanisms, and to develop specific hypotheses relevant to these chronic lung diseases.

Methods: Lung tissue samples from patients with different types of ILD were obtained from the Lung Tissue Research Consortium and total cell RNA was isolated. Global mRNA and microRNA were profiled by hybridization and amplification-based methods. Differentially expressed genes were compiled and used to identify critical signaling pathways and potential biomarkers. Modules of genes were identified that formed a regulatory network, and studies were performed on cultured cells in vitro for comparison with the in vivo results.

Results: By profiling mRNA and microRNA (miRNA) expression levels, we found subsets of differentially expressed genes that distinguished patients with ILDs from controls and that correlated with different disease stages and subtypes of ILDs. Network analysis, based on pathway databases, revealed several disease-associated gene modules, involving genes from the TGF-β, Wnt, focal adhesion, and smooth muscle actin pathways that are implicated in advancing fibrosis, a critical pathological process in ILDs. A more comprehensive approach was also adapted to construct a putative global gene regulatory network based on the perturbation of key regulatory elements, transcription factors and microRNAs. Our data underscores the importance of TGF-β signaling and the persistence of smooth muscle actin-containing fibroblasts in these diseases. We present evidence that, downstream of TGF-β signaling, microRNAs of the miR-23a cluster and the transcription factor Zeb1 could have roles in mediating an epithelial to mesenchymal transition (EMT) and the resultant persistence of mesenchymal cells in these diseases.

Conclusions: We present a comprehensive overview of the molecular networks perturbed in ILDs, discuss several potential key molecular regulatory circuits, and identify microRNA species that may play central roles in facilitating the progression of ILDs. These findings advance our understanding of these diseases at the molecular level, provide new molecular signatures in defining the specific characteristics of the diseases, suggest new hypotheses, and reveal new potential targets for therapeutic intervention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3035594PMC
http://dx.doi.org/10.1186/1755-8794-4-8DOI Listing

Publication Analysis

Top Keywords

mrna microrna
12
systems biology
8
interstitial lung
8
lung diseases
8
lung tissue
8
differentially expressed
8
expressed genes
8
regulatory network
8
smooth muscle
8
tgf-β signaling
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!