AI Article Synopsis

  • Exosomes are small vesicles released by cells and found in various bodily fluids, including blood and urine.
  • Recent research has shown that these vesicles contain both common proteins and unique proteins that relate to their specific cell types, which may play a role in human diseases.
  • Understanding exosome proteomics can enhance our knowledge of their functions and provide new biomarkers for diagnosing diseases through patient fluids.

Article Abstract

Exosomes are membranous vesicles released by cells in extracellular fluids: they have been found and analyzed in blood, urine, amniotic fluid, breast milk, seminal fluid, saliva and malignant effusions, besides conditioned media from different cell lines. Several recent papers show that exosome proteomes of different origin include both a common set of membrane and cytosolic proteins, and specific subsets of proteins, likely correlated to cell-type associated functions. This is particularly interesting in relation to their possible involvement in human diseases. The knowledge of exosome proteomics can help not only in understanding their biological roles but also in supplying new biomarkers to be searched for in patients' fluids. This review offers an overview of technical and analytical issues in exosome proteomics, and it highlights the significance of proteomic studies in terms of biological and clinical usefulness.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.201000422DOI Listing

Publication Analysis

Top Keywords

exosome proteomics
12
advances membranous
4
membranous vesicle
4
exosome
4
vesicle exosome
4
proteomics improving
4
improving biological
4
biological understanding
4
understanding biomarker
4
biomarker discovery
4

Similar Publications

Extracellular vesicles (EVs) from brain-seeking breast cancer cells (Br-EVs) breach the blood-brain barrier (BBB) via transcytosis and promote brain metastasis. Here, we defined the mechanisms by which Br-EVs modulate brain endothelial cell (BEC) dynamics to facilitate their BBB transcytosis. BEC treated with Br-EVs show significant downregulation of Rab11fip2, known to promote vesicle recycling to the plasma membrane and significant upregulation of Rab11fip3 and Rab11fip5, which support structural stability of the endosomal compartment and facilitate vesicle recycling and transcytosis, respectively.

View Article and Find Full Text PDF

Introduction: Group B Streptococcus (GBS) is an opportunistic pathogen that can induce chorioamnionitis (CA), increasing the risk of neurodevelopmental disorders (NDDs) in the offspring. The placenta facilitates maternal-fetal communication through the release of extracellular vesicles (EVs), which may carry inflammatory molecules such as interleukin (IL)-1. Although the role of EVs in immune modulation is well established, their specific characterization in the context of GBS-induced CA has not yet been investigated.

View Article and Find Full Text PDF

Glutamate molecular structure and protein affect the inhibition of breast cancer cell metastasis: Cell-derived exosomes inhibitory effects through the MAPK signaling pathway.

Int J Biol Macromol

January 2025

Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, and Key Laboratory of Molecular Pathology in Tumors of Baise, Baise 533000, Guangxi Province, PR China; Department of Oncology-Pathology, Karolinska Institutet, Stockholm SE-17176, Sweden. Electronic address:

The aim of this study was to investigate the inhibitory effect of glutamate molecular structure and protein on breast cancer cell metastasis and the potential inhibitory mechanism of cell-derived exosomes via MAPK signaling pathway. Breast cancer cell lines with high metastatic potential were selected by in vitro cell culture technique. The effects of specific inhibitors of glutamic acid on the proliferation and metastasis of breast cancer cells were studied.

View Article and Find Full Text PDF

Urinary Proteome and Exosome Analysis Protocol for the Discovery of Respiratory Diseases Biomarkers.

Biomolecules

January 2025

BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.

This study aims to develop a protocol for respiratory disease-associated biomarker discovery by combining urine proteome studies with urinary exosome components analysis (i.e., miRNAs).

View Article and Find Full Text PDF

: Endometrial cancer (EC) is the second most frequent gynecological malignant tumor in postmenopausal women. Pathogenic mechanisms related to the onset and development of the disease are still unknown. To identify dysregulated proteins associated with EC we exploited a combined in vitro/in silico approach analyzing the proteome of exosomes with advanced MS techniques and annotating their results by using Chymeris1 AI tools.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!