Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Based on the pseudo Jahn-Teller effect (PJTE) theory, an approach is developed to rationalize and predict the conformations and conformational changes in molecular systems with a common pattern, a double bond. It is shown that starting with the high-symmetry geometry of the environment (in many cases D(2d)), the double bond descends from an e(2) electronic configuration (e is a twofold degenerate MO) which produces a variety of PJT distortions, the main of which is the rotational (b(1)) transformation D(2d) → D(2h) accompanied by the formation of the double bond. Further PJT interactions with higher energy E-states may trigger additional distortions which in D(2h) symmetry are classified as in-plane (e(i)) cis and trans, and out-of-plane (e(o)) chair and boat. The realization of these conformations depends on the positions of the excited E-states and the PJTE parameter values. The two emerging PJTE problems, ((3)A(2) + (3)E(1) + (3)E(2)) ⊗ (e(i) + e(o)) and ((1)A(1) + (1)B(1) + (1)B(2) + (1)E(1) + (1)E(2)) ⊗ (b(1) + e(i) + e(o)), are formulated in the matrix form and provide a general picture of the ground and excited adiabatic potential energy surfaces. Following this scheme in combination with ab initio calculations, the possible conformations and conformational transitions are analyzed for several specific systems including (in increasing complexity) N(2)H(2), C(2)H(4), N(2)(NH(2))(2) and N(2)(C(6)H(5))(2) (azobenzene). The family of molecular systems with a double bond is vast, but the importance of the PJT approach developed here is also in its general validity as it can be applied to any other systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c0cp00900h | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!