Control of the stereo-selectivity of styrene epoxidation by cytochrome P450 BM3 using structure-based mutagenesis.

Metallomics

Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Henry, Wellcome Building, PO Box 138, Lancaster Road, Leicester LE1 9HN, United Kingdom.

Published: April 2011

The potential of flavocytochrome P450 BM3 (CYP102A1) from Bacillus megaterium for biocatalysis and biotechnological application is widely acknowledged. The catalytic and structural analysis of the Ala82Phe mutant of P450 BM3 has shown that filling a hydrophobic pocket near the active site improved the binding of small molecules, such as indole (see Huang et al., J. Mol. Biol., 2007, 373, 633) and styrene. In this paper, additional mutations at Thr438 are shown to decrease the binding of and catalytic activity towards laurate, whereas they significantly increased the stereo-specificity of styrene epoxidation. Production of R-styrene oxide with 48% and 64% e.e., respectively, was achieved by the Ala82Phe-Thr438Leu and Ala82Phe-Thr438Phe mutants. These structure-based mutants of P450 BM3 illustrate the promise of rational design of synthetically useful biocatalysts for regio- and stereo- specific mono-oxygenation reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c0mt00082eDOI Listing

Publication Analysis

Top Keywords

p450 bm3
16
styrene epoxidation
8
control stereo-selectivity
4
stereo-selectivity styrene
4
epoxidation cytochrome
4
p450
4
cytochrome p450
4
bm3
4
bm3 structure-based
4
structure-based mutagenesis
4

Similar Publications

Pylb-based overexpression of cytochrome P450 in Bacillus subtilis 168.

Enzyme Microb Technol

January 2025

Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Water Science and Technology for Sustainable Environment Research Unit, Chulalongkorn University, Bangkok 10330, Thailand. Electronic address:

Inducer-free expression systems are promising tools for biorefinery because they can reduce the reliance on inducers, reducing production costs and simplifying processes. Owing to their broad range of substrate structures and catalytic reactions, cytochrome P450s are promising biocatalysts to produce value-added compounds. However, unsuitable levels of cytochrome P450 expression could result in cell stress, affecting the efficiency of the biocatalyst.

View Article and Find Full Text PDF

Production of derivatives of α-terpineol by bacterial CYP102A1 enzymes.

Biotechnol Lett

November 2024

School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, 77 Yongbongro, Gwangju, 61186, Republic of Korea.

The monooxygenase activity of engineered CYP102A1 on α-terpineol was investigated. CYP102A1 M850 mutant (F11Y/R47L/D68G/F81I/F87V/E143G/L188Q/E267V/H408R) showed the highest catalytic activity toward α-terpineol among the engineered mutants produced by random mutagenesis. The major product (P1) of α-terpineol, p-menth-1-ene-3,8-diol, was characterized by high-performance liquid chromatography, gas-chromatography mass spectrometry, and nuclear magnetic resonance spectroscopy.

View Article and Find Full Text PDF
Article Synopsis
  • * The process begins with engineering a biosynthetic pathway to produce drimenol, followed by the use of an engineered enzyme for a specific hydroxylation reaction.
  • * Finally, a nickel-catalyzed reductive coupling technique is employed to synthesize various drimane meroterpenoids in a streamlined and enantiospecific way, which could lead to further optimization of their biological activities.
View Article and Find Full Text PDF

Engineering Regioselectivity of P450 BM3 Enables the Biosynthesis of Murideoxycholic Acid by 6β-Hydroxylation of Lithocholic Acid.

Biotechnol J

November 2024

MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, P. R. China.

Murideoxycholic acid (MDCA), as a significant secondary bile acid derived from the metabolism of α/β-muricholic acid in rodents, is an important component in maintaining the bile acid homeostasis. However, the biosynthesis of MDCA remains a challenging task. Here, we present the development of cytochrome P450 monooxygenase CYP102A1 (P450 BM3) from Bacillus megaterium, employing semi-rational protein engineering technique.

View Article and Find Full Text PDF

(+)-3,6-Epoxymaaliane: A Novel Derivative of (+)-Bicyclogermacrene Oxidation Catalyzed by CYP450 BM3-139-3 and Its Variants.

Chembiochem

November 2024

State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.

(+)-Bicyclogermacrene is a sesquiterpene compound found in various plant essential oils and serves as a crucial precursor for multiple biologically active compounds. Many derivatives of (+)-bicyclogermacrene have been shown to exhibit valuable bioactivities. Cytochrome P450 BM3 from Bacillus megaterium can catalyze a variety of substrates and different types of oxidation reactions, making it become a powerful tool for oxidizing terpenes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!