The transforming growth factor-β (TGF-β) family of extracellular signaling molecules is heavily involved in developmental events, including patterning, formation, maintenance, and closure of the cranial suture. Several studies have demonstrated that TGF-βs are temporally and spatially localized to the suture and play a pivotal role in sutural state. These signals are translated into intracellular activity through a family of proteins known as smads. There are 8 known smads, with smads 1, 5, and 8 transducing BMP signals and smads 2 and 3 transducing TGF-β signals. Dimerization of any of these smads and smad 4 is necessary for phosphorylation and activation. Although many studies have delineated the presence of TGF-β during suture closure, no studies have determined smad activity. It was hypothesized that smad activity would change during sutural closure. Reverse transcription-polymerase chain reaction was used to determine whether TGF-β-responsive smads were present in the suture at which point they were immunohistochemically localized. A rat model was used in which the posterior intrafrontal suture fused during neonatal days 16 to 22. Time points before and after this event were analyzed for changes in smad expression and function. It was determined from these experiments that (1) the TGF-β-responsive smads 2, 3, and 4 are all present in the suture; (2) smads 2 and 4 are distributed in the region of the osteogenic front of the suture; and (3) smad 2/4 activity decreases in areas in which presumptive bone will form. These results add to the knowledge present about sutural development and may provide news targets to which therapeutics can be developed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/SCS.0b013e3181f7dfa0 | DOI Listing |
Biomed Mater
January 2025
School of Food Science and Technology, Dalian Polytechnic University, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian 116034, People's Republic of China.
Bone morphogenetic protein 2 (BMP-2) and a polysaccharide (SUP) were embedded in the calcium phosphate cement (CPC) scaffold, and the bone repair ability was evaluated. The new scaffolds were characterized using x-ray diffraction, Fourier transform-infrared, scanning electron microscopy, and energy dispersive spectroscopy analyses. CPC-BMP2-SUPH scaffold promoted the BMP-2 release by 1.
View Article and Find Full Text PDFIntroduction: To determine the effects of atorvastatin on cardiac function and hemodynamics and to investigate its functional mechanism on cardiac fibrosis in acute myocardial infarction (AMI) rats.
Methods: Cardiac functions and hemodynamic changes were evaluated in each group on day 28. Quantitative reverse transcription-polymerase chain reaction, Western blot, and immunohistochemistry were performed to detect the expression of notch1, transforming growth factor-β (TGF-β), Smad2, Smad7, as well as myocardial fibrosis factors (i.
Cell Death Discov
January 2025
Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.
Intestinal fibrosis, as a late-stage complication of inflammatory bowel disease (IBD), leads to bowel obstruction and requires surgical intervention, significantly lowering the quality of life of affected patients. SAA3, a highly conserved member of the serum amyloid A (SAA) apolipoprotein family in mice, is synthesized primarily as an acute phase reactant in response to infection, inflammation and trauma. An increasing number of evidence suggests that SAA3 exerts a vital role in the fibrotic process, even though the underlying mechanisms are not yet fully comprehended.
View Article and Find Full Text PDFTher Adv Med Oncol
January 2025
Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.
Bladder cancer was the 10th most commonly diagnosed cancer worldwide in 2020. Extracellular vesicles (EVs) are nano-sized membranous structures secreted by all types of cells into the extracellular space. EVs can transport proteins, lipids, or nucleic acids to specific target cells.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Life Sciences, Institute of Genome Sciences, National Yang Ming Chiao Tung University, 155 Li-Nong Street, Section 2, Beitou, Taipei, 112, Taiwan.
Background: TGF-β1 is the most abundant cytokine in bone, in which it serves as a vital factor to interdict adipogenesis and osteogenesis of bone marrow-derived mesenchymal stem cells (BM-MSCs). However, how TGF-β1 concurrently manipulates differentiation into these two distinct lineages remains elusive.
Methods: Treatments with ligands or inhibitors followed by biochemical characterization, reporter assay, quantitative PCR and induced differentiation were applied to MSC line or primary BM-MSCs for signaling dissection.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!