Recently, we investigated the molecular mechanisms of the smoking cessation drug varenicline, a nicotinic acetylcholine receptor (nAChR) partial agonist, in its ability to decrease voluntary ethanol intake in mice. Previous to our study, other labs had shown that this drug can decrease ethanol consumption and seeking in rat models of ethanol intake. Although varenicline was designed to be a high affinity partial agonist of nAChRs containing the α4 and β2 subunits (designated as α4β2*), at higher concentrations it can also act upon α3β2*, α6*, α3β4* and α7 nAChRs. Therefore, to further elucidate the nAChR subtype responsible for varenicline-induced reduction of ethanol consumption, we utilized a pharmacological approach in combination with two complimentary nAChR genetic mouse models, a knock-out line that does not express the α4 subunit (α4 KO) and another line that expresses α4* nAChRs hypersensitive to agonist (the Leu9'Ala line). We found that activation of α4* nAChRs was necessary and sufficient for varenicline-induced reduction of alcohol consumption. Consistent with this result, here we show that a more efficacious nAChR agonist, nicotine, also decreased voluntary ethanol intake, and that α4* nAChRs are critical for this reduction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3127053 | PMC |
http://dx.doi.org/10.4161/chan.5.2.14409 | DOI Listing |
Addict Biol
January 2025
Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany.
The ability of environmental cues to trigger alcohol-seeking behaviours is thought to facilitate problematic alcohol use. Individuals' tendency to attribute incentive salience to cues may increase the risk of addiction. We sought to study the relationship between incentive salience and alcohol addiction using non-preferring rats to model the heterogeneity of human alcohol consumption, investigating both males and females.
View Article and Find Full Text PDFNicotine Tob Res
November 2024
Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Introduction: The increasing prevalence of electronic nicotine delivery systems and alcohol drinking has led to increases in nicotine and alcohol co-use. However, the impact of ENDs on brain activity and binge drinking behavior is not fully understood.
Aims And Methods: We subjected female and male C57BL/6J mice to a voluntary drinking and electronic nicotine vapor exposure paradigm.
Neuropharmacology
March 2025
Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. Electronic address:
Metabolic-epigenetic interactions are emerging as key pathways in regulating alcohol-related transcriptional changes in the brain. Recently, we have shown that this is mediated by the metabolic enzyme Acetyl-CoA synthetase 2 (Acss2), which is nuclear and chromatin-bound in neurons. Mice lacking ACSS2 fail to deposit alcohol-derived acetate onto histones in the brain and show no conditioned place preference for ethanol reward.
View Article and Find Full Text PDFBiochemistry (Mosc)
November 2024
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia.
Disturbances in the Hedgehog (Hh) signaling play an important role in dysmorphogenesis of bone tissue and central nervous system during prenatal alcohol exposure, which underlies development of fetal alcohol syndrome. The involvement of Hh proteins in the mechanisms of alcohol intake in adults remains obscure. We investigated the role of the Hh cascade in voluntary ethanol drinking and development of anxiety-like behavior (ALB) during early abstinence and assessed changes in the expression of Hh pathway components in different brain regions of male Wistar rats in a model of voluntary alcohol drinking using the intermittent access to 20% ethanol in a two-bottle choice procedure.
View Article and Find Full Text PDFeNeuro
December 2024
Department of Neuroscience, Tufts School of Medicine, Tufts University, Boston, Massachusetts 02111
Although most adults in the United States will drink alcohol in their life, only ∼6% will go on to develop an alcohol use disorder (AUD). While a great deal of work has furthered our understanding of the cycle of addiction, it remains unclear why certain people transition to disordered drinking. Altered activity in regions implicated in AUDs, like the basolateral amygdala (BLA), has been suggested to play a role in the pathophysiology of AUDs, but how these networks contribute to alcohol misuse remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!