Intranasal delivery of liposome-encapsulated inactivated Newcastle Disease virus (NDV) is known to be an effective vaccine for inducing immunity in the respiratory tract from our previous reports. Four-week-old specific pathogen-free chickens were intranasally immunized with NDV entrapped in phosphatidylcholine-liposomes (PC-Lip). The mucosal levels of anti-NDV s-immunoglobulin A (IgA), serum IgG, a high hemagglutination inhibition titer (1:640), and the high survival rate with the PC-Lip vaccine were comparable to those of our previous report. The immune mechanisms of the PC-Lip adjuvant were determined by in vitro cellular experiments using the NO production of chicken spleen macrophages. The most important finding of this study was proving that macrophages were stimulated by PC-Lip via the extracellular regulated kinase (ERK) 1/2 and nuclear factor (NF)-κB activation pathways. This finding may be useful for developing potent mucosal vaccine delivery systems in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1748-6041/6/1/015011 | DOI Listing |
Int J Pharm
January 2025
Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:
Surgical resection and postoperative adjuvant chemotherapy have enhanced the outlook for breast cancer patients. However, tumor relapse and serious side effects of chemotherapy continue to impact patients' quality of life. Designing injectable composite hydrogel made of biodegradable polymers providing sustained release of antiangiogenic and chemotherapeutic agents might play a vital role in elimination of cancer cells.
View Article and Find Full Text PDFBiomaterials
January 2025
School of Life Science, Chongqing University, Chongqing, 400044, China. Electronic address:
In-situ tumor vaccination remains challenging due to difficulties in the exposure and presentation of tumor-associated neoantigens (TANs). In view of the central role of lipid metabolism in cell fate determination and tumor-immune cell communication, here we report a photo-controlled lipid metabolism nanoregulator (PLMN) to achieve robust in-situ adjuvant-free vaccination, which is constructed through hierarchically integrating photothermal-inducible arachidonate 15-lipoxygenase (ALOX15)-expressing plasmids, cypate and FIN56 into cationic liposomes. Near-infrared light (NIR) stimulation triggers on-demand ALOX15 editing and causes excessive accumulation of downstream pro-ferroptosis lipid metabolites.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China. Electronic address:
Herpes zoster is an acute infectious skin disease caused by the reactivation of latent varicella-zoster virus, vaccination, such as subunit vaccine with good safety, can effectively prevent shingles through increasing immunity of the body. However, protein antigens are prone to degradation and inactivation, which alone is generally not sufficient to induce potent immune effect. In this study, the liposomal vaccine platform modified with mPLA (TLR4 agonist) was developed to improve the immunogenicity of glycoprotein E (VZV-gE) derived from herpes zoster virus.
View Article and Find Full Text PDFCurr Drug Targets
January 2025
Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.) 470003, India.
Breast cancer remains the second most prevalent cancer among women in the United States. Despite advancements in surgical, radiological, and chemotherapeutic techniques, multidrug resistance continues to pose significant challenges in effective treatment. Combination chemotherapy has emerged as a promising approach to address these limitations, allowing multiple drugs to target malignancies via distinct mechanisms of action.
View Article and Find Full Text PDFInt J Pharm
January 2025
Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan; Innovative Research Center for Drug Delivery System, Institute of Biomedical Sciences, Tokushima University, 770-8505 Tokushima, Japan. Electronic address:
B cell-based vaccines are expected to provide an alternative to DC-based vaccines. However, the efficacy of antigen uptake by B cells in vitro is relatively low, and efficient antigen-loading methods must be established before B cell-based vaccines are viable in clinical settings. We recently developed an in vitro system that efficiently loads antigens into isolated splenic B cells via liposomes decorated with hydroxyl PEG (HO-PEG-Lips).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!