Objective: Microsomal prostaglandin E(2) synthase-1 (mPGES-1) catalyzes the terminal step in the biosynthesis of PGE(2). Early growth response factor-1 (Egr-1) is a key transcription factor in the regulation of mPGES-1, and its activity is negatively regulated by the corepressor NGF1-A-binding protein-1 (NAB1). We examined the effects of valproic acid (VA), a histone deacetylase inhibitor, on interleukin 1ß (IL-1ß)-induced mPGES-1 expression in human chondrocytes, and evaluated the roles of Egr-1 and NAB1 in these effects.

Methods: Chondrocytes were stimulated with IL-1 in the absence or presence of VA, and the level of mPGES-1 protein and mRNA expression were evaluated using Western blotting and real-time reverse-transcription polymerase chain reaction (PCR), respectively. mPGES-1 promoter activity was analyzed in transient transfection experiments. Egr-1 and NAB1 recruitment to the mPGES-1 promoter was evaluated using chromatin immunoprecipitation assays. Small interfering RNA (siRNA) approaches were used to silence NAB1 expression.

Results: VA dose-dependently suppressed IL-1-induced mPGES-1 protein and mRNA expression as well as its promoter activation. Treatment with VA did not alter IL-1-induced Egr-1 expression, or its recruitment to the mPGES-1 promoter, but prevented its transcriptional activity. The suppressive effect of VA requires de novo protein synthesis. VA induced the expression of NAB1, and its recruitment to the mPGES-1 promoter, suggesting that NAB1 may mediate the suppressive effect of VA. Indeed, NAB1 silencing with siRNA blocked VA-mediated suppression of IL-1-induced mPGES-1 expression.

Conclusion: VA inhibited IL-1-induced mPGES-1 expression in chondrocytes. The suppressive effect of VA was not due to reduced expression or recruitment of Egr-1 to the mPGES-1 promoter and involved upregulation of NAB1.

Download full-text PDF

Source
http://dx.doi.org/10.3899/jrheum.100907DOI Listing

Publication Analysis

Top Keywords

mpges-1 promoter
20
mpges-1
12
recruitment mpges-1
12
il-1-induced mpges-1
12
nab1
9
valproic acid
8
microsomal prostaglandin
8
prostaglandin synthase-1
8
expression
8
expression chondrocytes
8

Similar Publications

Pharmacological mechanisms of sinomenine in anti-inflammatory immunity and osteoprotection in rheumatoid arthritis: A systematic review.

Phytomedicine

December 2023

State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China. Electronic address:

Background: Sinomenine (SIN) is the main pharmacologically active component of Sinomenii Caulis and protects against rheumatoid arthritis (RA). In recent years, many studies have been conducted to elucidate the pharmacological mechanisms of SIN in the treatment of RA. However, the molecular mechanism of SIN in RA has not been fully elucidated.

View Article and Find Full Text PDF

Sinomenine increases the methylation level at specific GCG site in mPGES-1 promoter to facilitate its specific inhibitory effect on mPGES-1.

Biochim Biophys Acta Gene Regul Mech

April 2022

Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macao, PR China; Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China. Electronic address:

Prostaglandin E (PGE) in cancer and inflammatory diseases is a key mediator of disease progression. Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used to inhibit the expression of PGE by depressing cyclooxygenase (COX) in inflammatory treatments. However, the inhibition to COXs may cause serious side effects.

View Article and Find Full Text PDF

Gene Deletion of Microsomal Prostaglandin E Synthase-1 Suppresses Chemically Induced Skin Carcinogenesis.

Anticancer Res

March 2021

Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, Japan

Background/aim: Microsomal prostaglandin (PG) E synthase-1 (mPGES-1) is a terminal enzyme in PGE synthesis and highly expressed in several cancers. In this study, to reveal the involvement of mPGES-1 in skin carcinogenesis, the effect of mPGES-1 deficiency on two-stage skin carcinogenesis in mice was investigated.

Materials And Methods: A two-stage skin carcinogenesis model using 7,12-dimethylbenz[a]anthracene (DMBA) as an initiator and 12-O-tetradecanoylphorbol-13-acetate (TPA) as a promoter was applied on mPGES-1 knockout (KO) mice and littermate wild-type mice of a Balb/c genetic background.

View Article and Find Full Text PDF

Acid reflux may contribute to the progression from Barrett's esophagus (BE) to esophageal adenocarcinoma (EA). However, it is not clear whether the molecular changes present in BE patients are reversible after proton pump inhibitor (PPI) treatment. In this study we examined whether PPI treatment affects NOX5, microsomal prostaglandin E synthase (mPGES)-1 and inducible nitric oxide synthase (iNOS) expression.

View Article and Find Full Text PDF

Inositol-requiring enzyme 1[α] (IRE1[α])-X-box binding protein spliced (XBP1) signaling maintains endoplasmic reticulum (ER) homeostasis while controlling immunometabolic processes. Yet, the physiological consequences of IRE1α-XBP1 activation in leukocytes remain unexplored. We found that induction of prostaglandin-endoperoxide synthase 2 (/Cox-2) and prostaglandin E synthase (/mPGES-1) was compromised in IRE1α-deficient myeloid cells undergoing ER stress or stimulated through pattern recognition receptors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!