Bone morphogenetic proteins (BMPs) induce osteoblastic differentiation in myogenic cells via the phosphorylation of Smads. Two types of Smad phosphatases--small C-terminal domain phosphatase 1 (SCP1) and protein phosphatase magnesium-dependent 1A--have been shown to inhibit BMP activity. Here, we report that SCP1 inhibits the osteoblastic differentiation induced by BMP-4, a constitutively active BMP receptor, and a constitutively active form of Smad1. The phosphatase activity of SCP1 was required for this suppression, and the knockdown of SCP1 in myoblasts stimulated the osteoblastic differentiation induced by BMP signaling. In contrast to protein phosphatase magnesium-dependent 1A, SCP1 did not reduce the protein levels of Smad1 and failed to suppress expression of the Id1, Id2, and Id3 genes. Runx2-induced osteoblastic differentiation was suppressed by SCP1 without affecting the transcriptional activity or phosphorylation levels of Runx2. Taken together, these findings suggest that SCP1 may inhibit the osteoblastic differentiation induced by the BMP-Smad axis via Runx2 by suppressing downstream effector(s).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417272PMC
http://dx.doi.org/10.1210/me.2010-0305DOI Listing

Publication Analysis

Top Keywords

osteoblastic differentiation
24
differentiation induced
12
c-terminal domain
8
domain phosphatase
8
protein phosphatase
8
phosphatase magnesium-dependent
8
constitutively active
8
scp1
7
osteoblastic
6
differentiation
6

Similar Publications

Epiregulin ameliorates ovariectomy-induced bone loss through orchestrating the differentiation of osteoblasts and osteoclasts.

J Bone Miner Res

January 2025

NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.

Epiregulin plays a role in a range of biological activities including malignancies. This study aims to investigate the potential contribution of epiregulin to bone cell differentiation and bone homeostasis. The data showed that epiregulin expression was upregulated during osteogenesis but downregulated during adipogenesis.

View Article and Find Full Text PDF

Calcium Phosphate (CaP) Composite Nanostructures on Polycaprolactone (PCL): Synergistic Effects on Antibacterial Activity and Osteoblast Behavior.

Polymers (Basel)

January 2025

Division of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea.

Bone tissue engineering aims to develop biomaterials that are capable of effectively repairing and regenerating damaged bone tissue. Among the various polymers used in this field, polycaprolactone (PCL) is one of the most widely utilized. As a biocompatible polymer, PCL is easy to fabricate, cost-effective, and offers consistent quality control, making it a popular choice for biomedical applications.

View Article and Find Full Text PDF

Background: Osteoporosis is characterized by the microstructural depletion of bone tissue and decreased bone density, leading to an increased risk of fractures. Nakai, an endemic species of the Korean Peninsula, grows wild in Ulleungdo. In this study, we aimed to investigate the effects of and its components on osteoporosis.

View Article and Find Full Text PDF

The present study explored the possible antiobesogenic and osteoprotective properties of the gut metabolite ginsenoside CK to clarify its influence on lipid and atherosclerosis pathways, thereby validating previously published hypotheses. These hypotheses were validated by harvesting and cultivating 3T3-L1 and MC3T3-E1 in adipogenic and osteogenic media with varying concentrations of CK. We assessed the differentiation of adipocytes and osteoblasts in these cell lines by applying the most effective doses of CK that we initially selected.

View Article and Find Full Text PDF

Tooth/skeletal dysplasia, such as hypophosphatasia (HPP), has been extensively studied. However, there are few definitive treatments for these diseases owing to the lack of an in vitro disease model. Cells differentiated from patient-derived induced pluripotent stem cells (iPSCs) demonstrate a pathological phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!