Dyshomeostasis of extracellular zinc and copper has been implicated in β-amyloid aggregation, the major pathology associated with Alzheimer disease. Presenilin mediates the proteolytic cleavage of the β-amyloid precursor protein to release β-amyloid, and mutations in presenilin can cause familial Alzheimer disease. We tested whether presenilin expression affects copper and zinc transport. Studying murine embryonic fibroblasts (MEFs) from presenilin knock-out mice or RNA interference of presenilin expression in HEK293T cells, we observed a marked decrease in saturable uptake of radiolabeled copper and zinc. Measurement of basal metal levels in 6-month-old presenilin 1 heterozygous knock-out (PS1(+/-)) mice revealed significant deficiencies of copper and zinc in several tissues, including brain. Copper/zinc superoxide dismutase (SOD1) activity was significantly decreased in both presenilin knock-out MEFs and brain tissue of presenilin 1 heterozygous knock-out mice. In the MEFs and PS1(+/-) brains, copper chaperone of SOD1 (CCS) levels were decreased. Zinc-dependent alkaline phosphatase activity was not decreased in the PS null MEFs. These data indicate that presenilins are important for cellular copper and zinc turnover, influencing SOD1 activity, and having the potential to indirectly impact β-amyloid aggregation through metal ion clearance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058959 | PMC |
http://dx.doi.org/10.1074/jbc.M110.163964 | DOI Listing |
Biol Trace Elem Res
January 2025
Department of Fisheries, Faculty of Marine Sciences and Fisheries, University of Chittagong, Chittagong, 4331, Bangladesh.
The Southeastern part of the Bay of Bengal is increasingly threatened by heavy metal pollution, posing significant risks to both aquatic life and human health. In this context, the contamination levels of six heavy metals-Cadmium (Cd), Lead (Pb), Zinc (Zn), Copper (Cu), Manganese (Mn), and Iron (Fe)-were assessed in the soft tissues of Green mussels (Perna viridis) from five key sites: Matamuhuri, Moheshkhali, Bakhkhali, Naf, and St. Martin.
View Article and Find Full Text PDFFuture Med Chem
December 2024
Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur Pakistan, Bahawalpur, Pakistan.
Aims: This study focuses on the synthesis and characterization of novel sitagliptin derivatives, aiming to develop potent, orally active anti-diabetic agents with minimal side effects for the management of type 2 diabetes mellitus. Copper (II) (SCu1-SCu9) and zinc (II) (SZn1-SZn9) metal complexes of sitagliptin-based derivatives were synthesized via a template reaction.
Material & Method: The synthesized complexes were comprehensively characterized using elemental analysis, FTIR, UV-Vis, 1 h NMR, and 13C NMR spectroscopy.
Angew Chem Int Ed Engl
January 2025
Anhui Agricultural University, Materials and Chemistry, CHINA.
Traditional photopolymerizations generally requires an initiator for initiating the polymerization while few cases have created degradable chemical bonds. Moreover, the migration instability and cytotoxicity of photo initiators are posing issues to human health and the environment. In this work, we discovered an initiator-free photo polycondensation system (IFPPC) between polymercaptans and aldehyde monomers, producing high strength plastic materials with exchangeable and degradable dithioacetal groups.
View Article and Find Full Text PDFChem Soc Rev
January 2025
Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Madison, Madison, WI 53705, USA.
Intracellular metal ions play essential roles in multiple physiological processes, including catalytic action, diverse cellular processes, intracellular signaling, and electron transfer. It is crucial to maintain intracellular metal ion homeostasis which is achieved by the subtle balance of storage and release of metal ions intracellularly along with the influx and efflux of metal ions at the interface of the cell membrane. Dysregulation of intracellular metal ions has been identified as a key mechanism in triggering programmed cell death (PCD).
View Article and Find Full Text PDFPhysiol Mol Biol Plants
December 2024
Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran.
Given the rising population and food demand, it is imperative to devise solutions to enhance plant resilience against abiotic stresses. Salinity stress impacts plant growth but also hampers plant performance and productivity. Plant hormones have emerged as a viable remedy to mitigate the detrimental effects of salinity stress on plants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!